Project description:Analysis of BGC-823 gastric cancer cells with SIRT1 overexpression or knockdown. SIRT1, a NAD+-dependent protein deacetylase, exerts inhibitory effects on migration and invasion of gastric cancer. Results provide insight into the role of SIRT1 in the metastasis of gastric cancer.
Project description:Specificity protein 1 (SP1) is an essential transcription factor regulating multiple cancer-related genes. Since aberrant expression of SP1 was known to be related to cancer development and progression, we focused on SP1 expression in gastric carcinoma and its correlation with disease outcomes. We discovered a different relationship between SP1 expression and patient survival in intestinal- and diffuse-type gastric cancer. In diffuse-type gastric cancer, patient survival decreased as SP1 expression increased (P < 0.05) in accordance with previously published papers, whereas the lack of SP1 expression in intestinal-type gastric cancer was correlated significantly with poor survival (P < 0.05). When SP1 downregulation was forced in high SP1 expressor intestinal-type gastric cell line MKN28 with siRNA, both migration and invasion were increased but cell proliferation was decreased. In accordance with these results, microarray data in siRNA-transfected MKN28 showed that genes inhibiting migration were downregulated and the expression of genes negatively facilitating proliferation was increased. Both migration and invasion, however, in low SP1 expressor intestinal-type gastric cell line AGS were decreased by forced SP1 expression. In contrast to intestinal-type, in diffuse-type gastric cell line SNU484, high SP1 expressor, both migration and invasion were decreased by siRNA. Contrary to previous studies, which did not reflect differences between the 2 histological types, our results showed that low expression of SP1 is involved in cancer progression and metastasis, and has a different effect on intestinal-type compared to diffuse-type gastric adenocarcinoma. 2 samples for MKN28 cells: si-SP1 against si-control and dyeswap of it upon 72 hour
Project description:Specificity protein 1 (SP1) is an essential transcription factor regulating multiple cancer-related genes. Since aberrant expression of SP1 was known to be related to cancer development and progression, we focused on SP1 expression in gastric carcinoma and its correlation with disease outcomes. We discovered a different relationship between SP1 expression and patient survival in intestinal- and diffuse-type gastric cancer. In diffuse-type gastric cancer, patient survival decreased as SP1 expression increased (P < 0.05) in accordance with previously published papers, whereas the lack of SP1 expression in intestinal-type gastric cancer was correlated significantly with poor survival (P < 0.05). When SP1 downregulation was forced in high SP1 expressor intestinal-type gastric cell line MKN28 with siRNA, both migration and invasion were increased but cell proliferation was decreased. In accordance with these results, microarray data in siRNA-transfected MKN28 showed that genes inhibiting migration were downregulated and the expression of genes negatively facilitating proliferation was increased. Both migration and invasion, however, in low SP1 expressor intestinal-type gastric cell line AGS were decreased by forced SP1 expression. In contrast to intestinal-type, in diffuse-type gastric cell line SNU484, high SP1 expressor, both migration and invasion were decreased by siRNA. Contrary to previous studies, which did not reflect differences between the 2 histological types, our results showed that low expression of SP1 is involved in cancer progression and metastasis, and has a different effect on intestinal-type compared to diffuse-type gastric adenocarcinoma.
Project description:Knock-down or overexpression of LAP2beta regulated migration and invasion of gastric cancer cells in vivo and in vitro studies. To investigate the underlying mechanism for LAP2beta-regulated migration and invasion, we compared the gene expression changes between the mock cells and the stable cells. Total RNA was purified from the mock cells and the stable cells overexpressing LAP2beta
Project description:RNA-binding proteins and their mediated alternative splicing play important roles in tumor cell invasion and migration. Here, we report that ESRP1 is a key regulator of gastric cancer cell metastasis. Overexpression of ESRP1 inhibits the invasion and migration of gastric cancer cells, in vivo and in vitro. Furthermore, we found that ESRP1 causes a wide range of alternative splicing events, and ESRP1-mediated CLSTN1 exon skipping may be a key mechanism for its inhibition of gastric cancer cell invasion and metastasis. Taken together, our data provide a molecular framework for the role of ESRP1 in gastric cancer development.
Project description:Knock-down or overexpression of LAP2beta regulated migration and invasion of gastric cancer cells in vivo and in vitro studies. To investigate the underlying mechanism for LAP2beta-regulated migration and invasion, we compared the gene expression changes between the mock cells and the stable cells.
Project description:RNA-binding proteins and their mediated alternative splicing play important roles in tumor cell invasion and migration. Here, we report that ESRP1 is a key regulator of gastric cancer cell metastasis. Overexpression of ESRP1 inhibits the invasion and migration of gastric cancer cells, in vivo and in vitro. Through crosslinking-immunoprecipitation and high-throughput sequencing (CLIP seq), we revealed that ESRP1 binding to the CLSTN1 mRNA and mediated its exon skipping, which may be a key mechanism for its inhibition of gastric cancer cell invasion and metastasis. Taken together, our data provide a molecular framework for the role of ESRP1 in gastric cancer development.
Project description:Gastric cancer (GC) represents a major health problem, remaining the fifth most common type of cancer and the third leading cause of cancer-related death worldwide with only few targeted therapies available to date. The positive effect of kinase inhibitors on many different types of cancers has prompted the investigation of these compounds also in GC. In a screen of FDA-approved kinase inhibitors, dasatinib was found as a potent inhibitor of gastric cancer cells migration and invasion. In order to identify the kinases involved proteomics analysis was performed identifying SRC kinases, Ephrins and DDR1 as potential molecular targets.
Project description:Background Mitogen-activated protein kinase 1 (MAPK1) has independent functions of phosphorylating histones as a kinase and directly binding the promoter regions of genes to regulate gene expression as a transcription factor. Previous studies identified elevated expression of MAPK1 in human gastric cancer, which is associated with its role as a kinase, facilitating gastric cancer cell migration and invasion. However, being a transcription factor, how MAPK1 binds its target genes and whether it modulated related gene expressions in gastric cancer remains unclear. Results Here, we integrated biochemical assays (protein interactions and chromatin immunoprecipitation (ChIP)), cellular analysis assays (cell proliferation and migration), RNA sequencing, ChIP sequencing, and clinical analysis to investigate the potential genomic recognition patterns of MAPK1 in a human gastric adenocarcinoma cell-line (AGS) and to uncover its regulatory effect on gastric cancer progression. We confirmed that MAPK1 promotes AGS cells invasion and migration by regulating the target genes in controversial directions, up-regulating seven target genes (KRT13, KRT6A, KRT81, MYH15, STARD4, SYTL4, and TMEM267) and down-regulating one gene (FGG). Among them, five genes (FGG, MYH15, STARD4, SYTL4, and TMEM267) were first associated with cancer procession, while the other three (KRT81, KRT6A, and KRT13) have been previously confirmed to be related to cancer metastasis and migration. Conclusion Our data showed that MAPK1 binds to the promoter regions of these target genes to control their transcription, hence encouraging AGS cell motility and invasion. Our research broadened the understanding of the regulatory roles of MAPK1, enriched the knowledge of transcription factors, and provided novel candidates for cancer therapeutics.