Project description:miRNA differential expression in Rheumatoid arthritis(RA) blood: Microarray analysis of miRNAs in blood from RA and healthy donors.
Project description:Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic destructive arthritis. Although helper T cells are involved in the pathogenesis of RA, the characteristics of synovium-infiltrating CD4+ T cells are still largely unknown. In this study, we investigated synovium-infiltrating helper T cells of rheumatoid arthritis patients
Project description:In order to identify new biomarkers for the diagnosis of rheumatoid arthritis, we used circRNA microarray technology to screen the differential expression of circRNA in peripheral blood mononuclear cells of patients with rheumatoid arthritis. We identified a total of 399 differentially expressed circRNAs in RA patients and healthy controls, of which 149 circRNAs were significantly up-regulated in RA patients and 250 were down-regulated. Among them, hsa_circRNA_101328 may be a potential biomarker for the diagnosis of RA.
Project description:Baker2013 - Cytokine Mediated Inflammation in
Rheumatoid Arthritis - Age Dependant
This model by Baker M. 2013, describes
the interaction between pro and anti-inflammatory cytokine
signalling in rheumatoid arthritis.
Using two ordinary differential equations, the first model
[BIOMD0000000550]
analyses bifurcation and describes different pathological states by
altering inflammatory regulation parameters.
The second model
[BIOMD0000000549]
includes the effect that ageing has on pro-inflammatory signalling,
allowing for time-dependant properties and disease progression to
be observed. The author also describes potential dosing for
reversal of the disease state.
This model is described in the article:
Mathematical modelling of
cytokine-mediated inflammation in rheumatoid arthritis.
Baker M, Denman-Johnson S, Brook BS,
Gaywood I, Owen MR.
Math Med Biol 2013 Dec; 30(4):
311-337
Abstract:
Rheumatoid arthritis (RA) is a chronic inflammatory disease
preferentially affecting the joints and leading, if untreated,
to progressive joint damage and disability. Cytokines, a group
of small inducible proteins, which act as intercellular
messengers, are key regulators of the inflammation that
characterizes RA. They can be classified into pro-inflammatory
and anti-inflammatory groups. Numerous cytokines have been
implicated in the regulation of RA with complex up and down
regulatory interactions. This paper considers a two-variable
model for the interactions between pro-inflammatory and
anti-inflammatory cytokines, and demonstrates that mathematical
modelling may be used to investigate the involvement of
cytokines in the disease process. The model displays a range of
possible behaviours, such as bistability and oscillations,
which are strongly reminiscent of the behaviour of RA e.g.
genetic susceptibility and remitting-relapsing disease. We also
show that the dose regimen as well as the dose level are
important factors in RA treatments.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000549.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Baker2013 - Cytokine Mediated Inflammation in
Rheumatoid Arthritis
This model by Baker M. 2013, describes
the interaction between pro and anti-inflammatory cytokine
signalling in rheumatoid arthritis.
Using two ordinary differential equations, the first model
[BIOMD0000000550]
analyses bifurcation and describes different pathological states by
altering inflammatory regulation parameters.
The second model
[BIOMD0000000549]
includes the effect that ageing has on pro-inflammatory signalling,
allowing for time-dependant properties and disease progression to
be observed. The author also describes potential dosing for
reversal of the disease state.
This model is described in the article:
Mathematical modelling of
cytokine-mediated inflammation in rheumatoid arthritis.
Baker M, Denman-Johnson S, Brook BS,
Gaywood I, Owen MR.
Math Med Biol 2013 Dec; 30(4):
311-337
Abstract:
Rheumatoid arthritis (RA) is a chronic inflammatory disease
preferentially affecting the joints and leading, if untreated,
to progressive joint damage and disability. Cytokines, a group
of small inducible proteins, which act as intercellular
messengers, are key regulators of the inflammation that
characterizes RA. They can be classified into pro-inflammatory
and anti-inflammatory groups. Numerous cytokines have been
implicated in the regulation of RA with complex up and down
regulatory interactions. This paper considers a two-variable
model for the interactions between pro-inflammatory and
anti-inflammatory cytokines, and demonstrates that mathematical
modelling may be used to investigate the involvement of
cytokines in the disease process. The model displays a range of
possible behaviours, such as bistability and oscillations,
which are strongly reminiscent of the behaviour of RA e.g.
genetic susceptibility and remitting-relapsing disease. We also
show that the dose regimen as well as the dose level are
important factors in RA treatments.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000550.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.