Project description:<p>This project is analyzing tissue and blood samples from people with RA and lupus to pinpoint genes, proteins, chemical pathways, and networks involved at a single cell level. This type of modular, molecular analysis will allow comparisons across the diseases and will provide insights into key aspects of the disease process. The project will identify differences between those RA patients who respond to therapies and those who do not, as well as provide a better systems level understanding of disease mechanisms in both RA and lupus. This knowledge is essential for the development of targeted therapies and for the application of existing and future therapies to appropriate patient populations.</p> <p>Additional datasets can be accessed through ImmPort (<a href="http://www.immport.org/immport-open/public/home/studySearch">http://www.immport.org/immport-open/public/home/studySearch</a>), accession: SDY998, SDY999.</p>
Project description:Pathogenic missense variants in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified through linkage analysis in familial Parkinson disease (PD). Subsequently, other missense variants with lower effect sizes on PD risk have emerged, as well as non-coding polymorphisms (e.g. rs76904798) enriched in PD cases in genome-wide association studies. Here we leverage recent whole-genome sequences from the Accelerating Medicines Partnership-Parkinson's Disease (AMP-PD) and the Genome Aggregation (gnomAD) databases to characterize novel missense variants in LRRK2 and explore their relationships with known pathogenic and PD-linked missense variants. Using a computational prediction tool that successfully classifies known pathogenic LRRK2 missense variants, we describe an online web-based resource that catalogs characteristics of over 1200 LRRK2 missense variants of unknown significance. Novel high-pathogenicity scoring variants, some identified exclusively in PD cases, tightly cluster within the ROC-COR-Kinase domains. Structure-function predictions support that some of these variants exert gain-of-function effects with respect to LRRK2 kinase activity. In AMP-PD participants, all p.R1441G carriers (N = 89) are also carriers of the more common PD-linked variant p.M1646T. In addition, nearly all carriers of the PD-linked p.N2081D missense variant are also carriers of the LRRK2 PD-risk variant rs76904798. These results provide a compendium of LRRK2 missense variants and how they associate with one another. While the pathogenic p.G2019S variant is by far the most frequent high-pathogenicity scoring variant, our results suggest that ultra-rare missense variants may have an important cumulative impact in increasing the number of individuals with LRRK2-linked PD.
Project description:C-di-AMP is primarily associated with the regulation of carbon utilization as well as other central traits, central metabolism, and bacterial stringent response to environmental changes. Elevated c-di-AMP levels result in aberrant physiology for most c-di-AMP synthesizing organisms, drawing particular attention to the importance of the c-di-AMP homeostasis and the molecular mechanisms pertaining to nucleotide metabolism and signal transduction. Here we show that c-di-AMP binds the GntR-family regulator DasR, uncovering a direct link between c-di-AMP and GlcNAc signaling. Further, we show c-di-AMP functions as an allosteric activator of DasR activity. GlcNAc is necessary for cell-surface structure from bacteria to humans, as well as a signal for bacterial development and antibiotic production. DasR is a global repressor that oversees GlcNAc metabolism and antibiotic production, which enables Actinobacteria to cope with stress and starvation. Our in vivo studies reveal the important biological role of allosteric regulation by c-di-AMP in metabolic imbalance and the transduction of a series of signals. Notably, DasR also controls intracellular c-di-AMP level through direct repression on disA. Overall, we identify a function of allosteric regulation between c-di-AMP and DasR in global signal integration and c-di-AMP homeostasis in bacteria, which is likely widespread in Actinobacteria.
Project description:Streptococcus pneumoniae harbors two cyclic di-AMP (c-di-AMP) phosphodiesterases Pde1 and Pde2. Previously, we demonstrated that deletion of one or both of these proteins leads to growth retardation in culture media, defects in the bacterial stress response, and attenuation in mouse models of disease. All of these phenotypes are due to increased levels of c-di-AMP, since the nature and break down products of each protein are different, and mutations that lower c-di-AMP levels partially restore growth and stress tolerance in these mutants. However, how c-di-AMP mediates pneumococcal stress resistance and virulence is unknown. To establish how c-di-AMP affects the transcriptome, RNA-Seq analysis was employed to compare gene expression between wild-type and Δpde1Δpde2 (ST2734) pneumococci. Overall, the competence regulon was upregulated in the Δpde1Δpde2 mutant.