Project description:We report RNA Seq analysis using Illumina nextSeq500 of human beta cells EndoC-BH1 treated with FGF2 to induce dedifferentiation. FGF2 treatment induced dedifferentiation of EndoC-BH1 cells. Indeed, we observed a strong decrease in expression of β-cell markers, (INS, MAFB, SLC2A2, SLC30A8 and GCK). Opposingly, we identifed positive markers of human β cell dedifferentiation, as attested by increased expression of mature β-cell disallowed transcription factors (MYC, HES1, SOX9 and NEUROG3). Interestingly, our temporal analysis revealed that loss of expression of β cell specific markers preceded the induction of β cell disallowed genes.
Project description:In the pathogenesis of type 2 diabetes development of insulin resistance triggers an increase in pancreatic β-cell insulin secretion capacity and β-cell number. Failure of this compensatory mechanism is caused by a dedifferentiation of β-cells, which leads to insufficient insulin secretion and diabetic hyperglycemia. The β-cell factors that normally protect against dedifferentiation remain poorly defined. Here, through a systems biology approach, we identify the transcription factor Klf6 as a regulator of β-cell adaptation to metabolic stress. We show that inactivation of Klf6 in mouse β-cells blunts their proliferation induced by the insulin resistance of pregnancy, high-fat high-sucrose feeding, and insulin receptor antagonism. Transcriptomic analysis showed that Klf6 controls the expression of β-cell proliferation genes and, in the presence of insulin resistance, it prevents the down-expression of genes controlling mature β-cell identity and the induction of disallowed genes that impair insulin secretion; its expression also limits the transdifferentiation of β-cells into alpha cells. Our study identifies a new transcription factor that protects β-cells against dedifferentiation and which may be targeted to prevent diabetes development.
Project description:Type 1 diabetes (T1D) is a chronic disease characterized by an autoimmune-mediated destruction of insulin-producing pancreatic β cells. Environmental factors such as viruses play an important role in the onset of T1D and interact with predisposing genes. Recent data suggest that viral infection of human islets leads to a decrease in insulin production rather than β cell death, suggesting loss of β cell identity. We undertook this study to examine whether viral infection could induce human ß cell dedifferentiation. Using the functional human β cell line EndoC-βH1, we demonstrate that polyinosinic-polycitidilic acid (PolyI:C), a synthetic double-stranded RNA that mimics a by-product of viral replication induces a decrease in β cell-specific gene expression. In parallel to this loss, the expression of progenitor-like genes such as SOX9 was activated following PolyI:C treatment or enteroviral infection. SOX9 was induced by the NF-kB pathway and also in a paracrine non-cell autonomous fashion through the secretion of IFNA. Finally, we identified new SOX9 targets in human β cells as new markers of dedifferentiation in T1D. These findings reveal that inflammatory signaling has clear implications in human β cell dedifferentiation.
Project description:Type 1 diabetes (T1D) is a chronic disease characterized by an autoimmune-mediated destruction of insulin-producing pancreatic β cells. Environmental factors such as viruses play an important role in the onset of T1D and interact with predisposing genes. Recent data suggest that viral infection of human islets leads to a decrease in insulin production rather than β cell death, suggesting loss of β cell identity. We undertook this study to examine whether viral infection could induce human β cell dedifferentiation. Using the functional human β cell line EndoC-βH1, we demonstrate that polyinosinic-polycytidylic acid (PolyI:C), a synthetic double-stranded RNA that mimics a byproduct of viral replication, induces a decrease in β cell-specific gene expression. In parallel with this loss, the expression of progenitor-like genes such as SOX9 was activated following PolyI:C treatment or enteroviral infection. SOX9 was induced by the NF-κB pathway and also in a paracrine non-cell-autonomous fashion through the secretion of IFN-α. Lastly, we identified SOX9 targets in human β cells as potentially new markers of dedifferentiation in T1D. These findings reveal that inflammatory signaling has clear implications in human β cell dedifferentiation.
Project description:Virus infection may induce excessive interferon (IFN) responses that can lead to host tissue injury or even death. β-arrestin 2 regulates multiple cellular events through the G protein-coupled receptor (GPCR) signaling pathways. Here we demonstrate that β-arrestin 2 also promotes virus-induced production of IFN-β and clearance of viruses in macrophages. β-arrestin 2 interacts with cyclic GMP-AMP synthase (cGAS) and increases the binding of dsDNA to cGAS to enhance cyclic GMP-AMP (cGAMP) production and the downstreatm stimulator of interferon genes (STING) and innate immune responses. Mechanistically, deacetylation of β-arrestin 2 at Lys171 facilitates the activation of the cGAS–STING signaling and the production of IFN-β. In vitro, viral infection induces the degradation of β-arrestin 2 to facilitate immune evasion, while a β-blocker, carvedilol, rescues β-arrestin 2 expression to maintain the antiviral immune response. Our results thus identify a viral immune-evasion pathway via the degradation of β-arrestin 2, and also hint that carvedilol, approved for treating heart failure, can potentially be repurposed as an antiviral drug candidate.
Project description:Loss of mature β cell function and identity, or β cell dedifferentiation, is seen in all types of diabetes mellitus. Two competing models explain β cell dedifferentiation in diabetes. In the first model, β cells dedifferentiate in the reverse order of their developmental ontogeny. This model predicts that dedifferentiated β cells resemble β cell progenitors. In the second model, β cell dedifferentiation depends on the type of diabetogenic stress. This model, which we call the “Anna Karenina” model, predicts that in each type of diabetes, β cells dedifferentiate in their own way, depending on how their mature identity is disrupted by any particular diabetogenic stress. We directly tested the two models using a β cell-specific lineage-tracing system coupled with RNA-sequencing in mice. We constructed a multidimensional map of β cell transcriptional trajectories during the normal course of β cell postnatal development, and during their dedifferentiation in models of both type 1 diabetes (NOD) and type 2 diabetes (BTBR-Lepob/ob). Using this unbiased approach, we show here that despite some similarities between immature and dedifferentiated β cells, β cells dedifferentiation in the two mouse models is not a reversal of developmental ontogeny and is different between different types of diabetes.
Project description:RNA silencing is a post-transcriptional gene-silencing mechanism mediated by microRNAs (miRNAs). However, the regulatory mechanism of RNA silencing during viral infection is unclear. TAR RNA-binding protein (TRBP) is an enhancer of RNA silencing that induces miRNA maturation by interacting with the ribonuclease Dicer. TRBP interacts with a virus sensor protein, laboratory of genetics and physiology 2 (LGP2), in the early stage of viral infection of human cells. Next, it induces apoptosis by inhibiting the maturation of miRNAs, thereby upregulating the expression of apoptosis regulatory genes. In this study, we show that TRBP undergoes a functional conversion in the late stage of viral infection. Viral infection resulted in the activation of caspases that proteolytically processed TRBP into two fragments. The N-terminal fragment did not interact with Dicer but interacted with type I interferon (IFN) signaling modulators, such as protein kinase R (PKR) and LGP2, and induced ER stress. The end results were irreversible apoptosis and suppression of IFN signaling. Our results demonstrate that the processing of TRBP enhances apoptosis, reducing IFN signaling during viral infection.
Project description:RNA silencing is a post-transcriptional gene-silencing mechanism mediated by microRNAs (miRNAs). However, the regulatory mechanism of RNA silencing during viral infection is unclear. TAR RNA-binding protein (TRBP) is an enhancer of RNA silencing that induces miRNA maturation by interacting with the ribonuclease Dicer. TRBP interacts with a virus sensor protein, laboratory of genetics and physiology 2 (LGP2), in the early stage of viral infection of human cells. Next, it induces apoptosis by inhibiting the maturation of miRNAs, thereby upregulating the expression of apoptosis regulatory genes. In this study, we show that TRBP undergoes a functional conversion in the late stage of viral infection. Viral infection resulted in the activation of caspases that proteolytically processed TRBP into two fragments. The N-terminal fragment did not interact with Dicer but interacted with type I interferon (IFN) signaling modulators, such as protein kinase R (PKR) and LGP2, and induced ER stress. The end results were irreversible apoptosis and suppression of IFN signaling. Our results demonstrate that the processing of TRBP enhances apoptosis, reducing IFN signaling during viral infection.