Project description:Glioblastomas are among the most lethal cancers; however, recent advances in survival have increased the need for better prognostic markers. microRNAs (miRNAs) hold great prognostic potential being deregulated in glioblastomas and highly stable in stored tissue specimens. Moreover, miRNAs control multiple genes representing an additional level of gene regulation possibly more prognostically powerful than a single gene. The aim of the study was to identify a novel miRNA signature with the ability to separate patients into prognostic subgroups. Samples from 40 glioblastoma patients were included retrospectively; patients were comparable on all clinical aspects except overall survival enabling patients to be categorized as short-term or long-term survivors based on median survival. A miRNome screening was employed, and a prognostic profile was developed using leave-one-out cross-validation. We found that expression patterns of miRNAs; particularly the four miRNAs: hsa-miR-107_st, hsa-miR-548x_st, hsa-miR-3125_st and hsa-miR-331-3p_st could determine short- and long-term survival with a predicted accuracy of 78%. Heatmap dendrograms dichotomized glioblastomas into prognostic subgroups with a significant association to survival in univariate (HR 8.50; 95% CI 3.06-23.62; p<0.001) and multivariate analysis (HR 9.84; 95% CI 2.93-33.06; p<0.001). Similar tendency was seen in The Cancer Genome Atlas (TCGA) using a 2-miRNA signature of miR-107 and miR-331 (miR sum score), which were the only miRNAs available in TCGA. In TCGA, patients with O6-methylguanine-DNA-methyltransferase (MGMT) unmethylated tumors and low miR sum score had the shortest survival. Adjusting for age and MGMT status, low miR sum score was associated with a poorer prognosis (HR 0.66; 95% CI 0.45-0.97; p=0.033). A Kyoto Encyclopedia of Genes and Genomes analysis predicted the identified miRNAs to regulate genes involved in cell cycle regulation and survival. In conclusion, the biology of miRNAs is complex, but the identified 4-miRNA expression pattern could comprise promising biomarkers in glioblastoma stratifying patients into short- and long-term survivors.
Project description:The characterization of glioblastoma has provided invaluable data related to this molecularly heterogeneous disease. Recent advances in high-throughput microarrays have received extensive attention and made substantial progress in reconstructing the gene regulatory network of medical biology. Using microarray analysis, significant differences in gene expression between normal and disease tissues have been observed. However, as a result of the underlying shortcomings of microarray technology, such as small sample size, measurement error, and information insufficiency, unveiling this disease mechanism has remained a major challenge to glioblastoma research. Hence, GO, pathway information, network-based approaches and machine learning algorithms have been employed to identify the mechanisms underlying this disease. We identified the differentially expressed genes (DEGs) between 9 glioblastoma samples and 9 normal brain samples.
Project description:Glioblastoma (GBM) is the most common and lethal primary malignancy of the central nervous system in adult. In order to improve the diagnosis, prevention and treatment of GBM, the details of molecular mechanisms underlying the tumorigenesis and development needs to be clarified. This is a nalysis of glioblastoma tissues and matched adjacent normal brain tissues from 3 patients. Results provide insight into molecular mechanisms underlying the non-coding and coding genes interactions in glioblastoma. 3 human GBM tissues and the matched adjacent normal brain tissues were analyzed using microarray. The aberrant lncRNAs, miRNAs and mRNAs between the 2 groups were detected.
Project description:MicroRNAs (miRNAs) are small (21-25 nucleotide in length) non-coding RNA molecules that negatively regulate protein expression. They are linked to cancer development and maintenance. In this work, studying gene expression profiles of 340 mammalian miRNAs with DNA microarrays, we selected 10 miRNAs gene features able to distinguish primary from secondary glioblastoma type; furthermore we verified that miR-21 and miR-155 up-regulatation seems to characterize the glioblastoma tumour state since it was found up-regulated in all samples analyzed compared to adult brain noneoplastic tissue. Since miR-21 function in glioblastoma cells was addressed previously we concentrated our efforts on miR-155 function. We found that miR-155 levels were markedly elevated both in primary and secondary glioblastomas tumours, in glioblastoma cell cultures and in 4 glioblastoma cell lines (U87, A172, LN229, and LN308) compared with adult brain tissue, CHP212-neuroblastoma cell lines and DAOY-1-medulloblastoma cell line. Since one of the miR-155 target was gamma-aminobutyric acid (GABA) A receptor (GABRA1) we verified if there was a relation between miR-155 up-regulation and GABRA1 expression. We demonstrated that, in cultured glioblastoma cells, knockdown of miR-155, which lower miR-155 expression to normal level, restore the normal expression of the gamma-aminobutyric acid (GABA) A receptor (GABRA1), making glioblastoma cells responsive to GABA cell cycle inhibiting signals. Our data suggest that aberrantly over-expressed miR-155 contribute to the malignant phenotype of the glioblastoma cells, promoting their unlimited growth. Keywords: miRNA expression profile
Project description:MicroRNAs (miRNAs) are small (21-25 nucleotide in length) non-coding RNA molecules that negatively regulate protein expression. They are linked to cancer development and maintenance. In this work, studying gene expression profiles of 340 mammalian miRNAs with DNA microarrays, we selected 10 miRNAs gene features able to distinguish primary from secondary glioblastoma type; furthermore we verified that miR-21 and miR-155 up-regulatation seems to characterize the glioblastoma tumour state since it was found up-regulated in all samples analyzed compared to adult brain noneoplastic tissue. Since miR-21 function in glioblastoma cells was addressed previously we concentrated our efforts on miR-155 function. We found that miR-155 levels were markedly elevated both in primary and secondary glioblastomas tumours, in glioblastoma cell cultures and in 4 glioblastoma cell lines (U87, A172, LN229, and LN308) compared with adult brain tissue, CHP212-neuroblastoma cell lines and DAOY-1-medulloblastoma cell line. Since one of the miR-155 target was gamma-aminobutyric acid (GABA) A receptor (GABRA1) we verified if there was a relation between miR-155 up-regulation and GABRA1 expression. We demonstrated that, in cultured glioblastoma cells, knockdown of miR-155, which lower miR-155 expression to normal level, restore the normal expression of the gamma-aminobutyric acid (GABA) A receptor (GABRA1), making glioblastoma cells responsive to GABA cell cycle inhibiting signals. Our data suggest that aberrantly over-expressed miR-155 contribute to the malignant phenotype of the glioblastoma cells, promoting their unlimited growth. Keywords: miRNA expression profile We studied the expression profiles of 340 miRNAs in 97 glioblastoma tissues, of which 66 were primary glioblastomas and 27 were secondary glioblastomas. We have 66 replicates of primary glioblastoma and 27 replicates of secondary glioblastoma, each hybridized with the respective adult non-neoplastic brain tissue as a control.