Project description:We established human colorectal tumor organoids from benign adenoma, primary colorectal cancer or metastasized colorectal cancer. The gene signature of tumor organoids associated with their tumor progression status. We also generated genome-edited organoids from human intestinal organoids recapitulating adenoma-carcinoma sequence. Gene expression signature of the genome engineered organoids were similar to that of adenoma organoids. This result indicated multiple (up to five) genetic mutations were insufficient for gene expression reprogramming of colorectal cancer. We used microarrays to detail the global program of gene expression in human colorectal tumor organoids and artificially mutation introduced organoids.
Project description:Whole transcriptome expression levels of healthy colonic, colorectal adenoma and colorectal cancer biopsy samples were analyzed by HTA 2.0 microarrays
Project description:We established human colorectal tumor organoids from benign adenoma, primary colorectal cancer or metastasized colorectal cancer. The gene signature of tumor organoids associated with their tumor progression status. We also generated genome-edited organoids from human intestinal organoids recapitulating adenoma-carcinoma sequence. Gene expression signature of the genome engineered organoids were similar to that of adenoma organoids. This result indicated multiple (up to five) genetic mutations were insufficient for gene expression reprogramming of colorectal cancer. We used microarrays to detail the global program of gene expression in human colorectal tumor organoids and artificially mutation introduced organoids. To assess the expression profiling of genome-engineered organoids, we prepared total-RNA from cultured adenoma, carcinoma and genome-engineered organoids. We produced two types of genome-engineered organoids using the CRISPR/Cas9 or lentivirus vector system. Each engineered gene and engineered methods are described as a single alphabet and method name, respectively, in the sample characteristics field. The abbreviations for the engineered genes are as follows. 1) Genome-engineered organoids with CRISPR/Cas9 A = APC deletion; K = KRAS G12V knock in; S = Smad4 deletion; T = TP53 deletion; P = PIK3CA E545K knock in. 2) Genome-engineered organoids with Lent virus vector B = CTNNB1 S33Y overexpression; K = KRAS G12V overexpression; S = Smad4 shRNA overexpression; T = TP53 shRNA overexpression; P = PIK3CA E545K overexpression.
Project description:Approximately two decades ago, Vogelstein and Fearon proposed the adenoma-carcinoma sequence of sporadic CRC development and illustrated the accumulation of genetic alterations during the stepwise progression, thereby providing a guideline for clinical practice. Although the detection and excision of precancerous lesions could prevent colorectal cancer and reduce mortality, 6% of adenomas will ultimately develop into colorectal cancer. Thus, this genetic model for colorectal tumorigenesis may not completely reflect the complex essence of the disease and whether the mode of initiation of the events in the multistep progression affects the outcome of CRC is still unknown. In this study, mRNA and miRNA expression profiling was performed with human colorectal tissues, including normal mucosa, adenoma and adenocarcinoma. Then, an integrated approach was adopted to establish the regulatory interaction networks that were correlated with colorectal carcinogenesis. Finally, a 55-gene signature whose expression was down-regulated in precancerous lesions compared to normal tissue was identified as a potential early indicator of CRC survival. The results suggested that genes related to immunity and homeostasis played a critical role in protection against adenoma initiation and that the altered molecular events that influence colorectal cancer prognosis may be set in an early, precancerous stage.
Project description:Approximately two decades ago, Vogelstein and Fearon proposed the adenoma-carcinoma sequence of sporadic CRC development and illustrated the accumulation of genetic alterations during the stepwise progression, thereby providing a guideline for clinical practice. Although the detection and excision of precancerous lesions could prevent colorectal cancer and reduce mortality, 6% of adenomas will ultimately develop into colorectal cancer. Thus, this genetic model for colorectal tumorigenesis may not completely reflect the complex essence of the disease and whether the mode of initiation of the events in the multistep progression affects the outcome of CRC is still unknown. In this study, mRNA and miRNA expression profiling was performed with human colorectal tissues, including normal mucosa, adenoma and adenocarcinoma. Then, an integrated approach was adopted to establish the regulatory interaction networks that were correlated with colorectal carcinogenesis. Finally, a 55-gene signature whose expression was down-regulated in precancerous lesions compared to normal tissue was identified as a potential early indicator of CRC survival. The results suggested that genes related to immunity and homeostasis played a critical role in protection against adenoma initiation and that the altered molecular events that influence colorectal cancer prognosis may be set in an early, precancerous stage.
Project description:We evaluated the profile of lncRNA and mRNA expression in 6 colorectal adenoma (CRA), 6 colorectal adenoma (CRC) and 6 matched normal mucosa (NOR) using the Exiqon miRCURY lncRNA and mRNA array,7th generation. We found that global dysregulated lncRNA and mRNAs between colorectal lesions and normal mucosa. Our findings implicates that dysregulation of lncRNA and mRNAs may play important role in the carcinogenesis and present therapeutic targets for CRC.
Project description:Approximately two decades ago, Vogelstein and Fearon proposed the adenoma-carcinoma sequence of sporadic CRC development and illustrated the accumulation of genetic alterations during the stepwise progression, thereby providing a guideline for clinical practice. Although the detection and excision of precancerous lesions could prevent colorectal cancer and reduce mortality, 6% of adenomas will ultimately develop into colorectal cancer. Thus, this genetic model for colorectal tumorigenesis may not completely reflect the complex essence of the disease and whether the mode of initiation of the events in the multistep progression affects the outcome of CRC is still unknown. In this study, mRNA and miRNA expression profiling was performed with human colorectal tissues, including normal mucosa, adenoma and adenocarcinoma. Then, an integrated approach was adopted to establish the regulatory interaction networks that were correlated with colorectal carcinogenesis. Finally, a 55-gene signature whose expression was down-regulated in precancerous lesions compared to normal tissue was identified as a potential early indicator of CRC survival. The results suggested that genes related to immunity and homeostasis played a critical role in protection against adenoma initiation and that the altered molecular events that influence colorectal cancer prognosis may be set in an early, precancerous stage. Four types of human colorectal tissues were selected by colonoscopic resection or colorectal surgery, including 12 normal mucosae, 21 low-grade adenomas (mild or moderate atypical hyperplasia), 30 high-grade adenomas (severe atypical hyperplasia or carcinoma in situ) and 25 adenocarcinomas. Gene expression profiling analysis of these samples was performed using Agilent 4x44K human whole genome gene expression microarray (G4112F).
Project description:We evaluated the profile of miRNA expression in 6 colorectal adenoma (CRA), 6 colorectal adenocarcinoma (CRC) and 6 matched normal mucosa (NOR) using the Exiqon miRCURY LNA microRNA array,7th generation. We found that global dysregulated miRNAs between colorectal lesions and normal mucosa. Our findings implicates that dysregulation of miRNAs may play important role in the carcinogenesis and present therapeutic targets for CRC.
Project description:Approximately two decades ago, Vogelstein and Fearon proposed the adenoma-carcinoma sequence of sporadic CRC development and illustrated the accumulation of genetic alterations during the stepwise progression, thereby providing a guideline for clinical practice. Although the detection and excision of precancerous lesions could prevent colorectal cancer and reduce mortality, 6% of adenomas will ultimately develop into colorectal cancer. Thus, this genetic model for colorectal tumorigenesis may not completely reflect the complex essence of the disease and whether the mode of initiation of the events in the multistep progression affects the outcome of CRC is still unknown. In this study, mRNA and miRNA expression profiling was performed with human colorectal tissues, including normal mucosa, adenoma and adenocarcinoma. Then, an integrated approach was adopted to establish the regulatory interaction networks that were correlated with colorectal carcinogenesis. Finally, a 55-gene signature whose expression was down-regulated in precancerous lesions compared to normal tissue was identified as a potential early indicator of CRC survival. The results suggested that genes related to immunity and homeostasis played a critical role in protection against adenoma initiation and that the altered molecular events that influence colorectal cancer prognosis may be set in an early, precancerous stage. Four types of human colorectal tissues were selected by colonoscopic resection or colorectal surgery, including 15 normal mucosae, 39 low-grade adenomas (mild or moderate atypical hyperplasia), 20 high-grade adenomas (severe atypical hyperplasia or carcinoma in situ) and 33 adenocarcinomas. MicroRNA expression profiling analysis of these samples was performed on Agilent 8Ã16K Human miRNA Microarray V3 (G4470C).