Project description:In order to define the genes responsible for the growth and survival of a human castration-resistant prostate cancer cell line, a short term (doxycycline inducible) knockdown system was developed and utilized. Three independent 22Rv1 cell isolates were derived for each of the following doxycycline-inducible shRNAs (shGFP, shAR3, and shVav3) (AR3 = AR-V7). The cells were grown in androgen depleted conditions, plus or minus doxycycline, for three days. RNA from the 18 samples was then sent to the University of Miami Genetics Core for RNA Integrity Number (RIN) evaluation and microarray analysis. Genes differentially regulated by AR-V7 knock-down or VAV3 knock-down were explored as downstream targets of AR-V7 or VAV3, respectively.
Project description:The constitutively active androgen receptor (AR) splice variant 7 (AR-V7) plays an important role in the progression of castration-resistant prostate cancer (CRPC). Although biomarker studies established the role of AR-V7 in resistance to AR-targeting therapies, how AR-V7 mediates genomic functions in CRPC remains largely unknown. Using a ChIP-exo approach, we show AR-V7 binds to distinct genomic regions and recognizes a full-length androgen-responsive element in CRPC cells and patient tissues. Remarkably, we find dramatic differences in AR-V7 cistromes across diverse CRPC cells and patient tissues, regulating different target gene sets involved in CRPC progression. Surprisingly, we discover that HoxB13 is universally required for and colocalizes with AR-V7 binding to open chromatin across CRPC genomes. HoxB13 pioneers AR-V7 binding through direct physical interaction, and collaborates with AR-V7 to up-regulate target oncogenes. Transcriptional coregulation by HoxB13 and AR-V7 was further supported by their coexpression in tumors and circulating tumor cells from CRPC patients. Importantly, HoxB13 silencing significantly decreases CRPC growth through inhibition of AR-V7 oncogenic function. These results identify HoxB13 as a pivotal upstream regulator of AR-V7-driven transcriptomes that are often cell context-dependent in CRPC, suggesting that HoxB13 may serve as a therapeutic target for AR-V7-driven prostate tumors.
Project description:Castration-resistant PCa (CRPC) remains androgen receptor (AR) dependent. There are multiple mechanisms for reactivation of AR including expression of the constitutively active AR splice variant, AR-V7 (AR3). Earlier studies suggest that though the variants regulate many of the same genes as AR, they also have unique targets. Another argument is that the variant is a “weak” AR without unique targets. We have used an LN95 cell line that endogenously expresses AR and a low level of AR-V7 to compare the activities of the isoforms and to determine whether there is differential regulation of target genes. The transcriptomes for AR and AR-V7 were identified using RNA-Seq.
Project description:CRPC remains AR dependent. There are multiple mechanisms for reactivation of AR including expression of constitutively active AR splices variant AR-V7 (AR3). Earlier studies suggest that though the variants regulate many of the same genes as AR, they also have unique targets. Another argument is that the variant is a “weak” AR. We have used an LNCaP cell line that expresses AR-V7 in response to doxycycline (LNCaP AR-V7) to compare the activities of the two isoforms and to identify differential regulation of target genes. We also used VCaP cell line that expresses AR-V7 in response to doxycycline (VCaP AR-V7) to validate the activities of the two isoforms in an alternative prostate cancer cell line. The transcriptomes for AR and AR-V7 in these cell lines were identified using RNA-Seq.
Project description:CRPC remains AR dependent. There are multiple mechanisms for reactivation of AR including expression of constitutively active AR splices variant AR-V7 (AR3). Earlier studies suggest that though the variants regulate many of the same genes as AR, they also have unique targets. Another argument is that the variant is a “weak” AR. We have used an LNCaP cell line that expresses AR-V7 in response to doxycycline to compare DNA interactions of the two isoforms and to identify differential regulation of target genes. ChIP-exo method was used to map AR and AR-V7 interaction with DNA in LNCaP engineered cell line (LNCaP AR-V7) at single base resolution.
Project description:To elucidate the AR-V7 role, we performed ChIP-seq on H3K4me1, H3K4me3, H3K27ac, and AR antibody recognizing the N-terminus of AR and AR splice variants (AR-Vs) using LNCaP and LNCaP95 cells. We showed 399 AR-V7 targeted regions in LNCaP95, most of the AR-V7 target regions could be commonly activated by hormone stimulated AR. However, 22 regions were identified as AR-V7 specific regions. In addition, we show here that AR-V7 can transcript in the ligand independent manner in LNCaP95, unlike LNCaP. We identified the AR-V7 target gene contributing to the CRPC progression.
Project description:Liquid biopsies have demonstrated that the constitutively active androgen receptor splice variant-7 (AR-V7) associates with reduced response and overall survival (OS) from endocrine therapies in castration resistant prostate cancer (CRPC). However, these studies provide little information pertaining to AR-V7 biology and expression in prostate cancer (PC) tissue. Following generation and validation of a novel AR-V7 antibody for immunohistochemistry (IHC); nuclear AR-V7 protein expression was determined for 358 primary prostate samples (358 patients) and 293 metastatic biopsies (194 patients). Associations with disease progression, nuclear AR full length (AR-FL) expression, response to abiraterone and/or enzalutamide, and gene signatures (from three independent cohorts) was determined.
Project description:The purpose of this study was to characterize the downstream transcriptomic effects of ARVib-mediated degradation of AR/AR-V7, particularly in attenuating AR/AR-V7 target gene expression in prostate cancer cells. Towards this goal, next-generation sequencing (NGS)-based gene expression profiling (RNA-Sequencing; RNA-Seq) was performed on castration-resistant prostate cancer (CRPC) C4-2B MDVR cells that were treated with vehicle control or one of the AR/AR-V7 inhibitors (ARVib), ARVib-7 or ARVib-31.
Project description:In castration-resistant prostate cancer (CRPC), clinical response to androgen receptor (AR) antagonists is limited mainly due to AR-variants expression and restored AR signaling. The metabolite spermine is most abundant in prostate and it decreases as prostate cancer progresses, but its functions remain poorly understood. Here, we show spermine inhibits full-length androgen receptor (AR-FL) and androgen receptor splice variant 7 (AR-V7) signaling and suppresses CRPC cell proliferation by directly binding and inhibiting protein arginine methyltransferase PRMT1. Spermine reduces H4R3me2a modification at the AR locus and suppresses AR binding as well as H3K27ac modification levels at AR target genes. Spermine supplementation restrains CRPC growth in vivo. PRMT1 inhibition also suppresses AR-FL and AR-V7 signaling and reduces CRPC growth. Collectively, we demonstrate spermine as an anticancer metabolite by inhibiting PRMT1 to transcriptionally inhibit AR-FL and AR-V7 signaling in CRPC, and we indicate spermine and PRMT1 inhibition as powerful strategies overcoming limitations of current AR-based therapies in CRPC.