Project description:DNA methylation is an epigenetic modification, influenced by both genetic and environmental variation, that plays a key role in transcriptional regulation and many organismal phenotypes. Although patterns of DNA methylation have been shown to differ between human populations, it remains to be determined how epigenetic diversity relates to the patterns of genetic and gene expression variation at a global scale. Here we measured DNA methylation at 485,000 CpG sites in five diverse human populations, and analyzed these data together with genome-wide genotype and gene expression data. We found that population-specific DNA methylation mirrors genetic variation, and has greater local genetic control than mRNA levels. We estimated the rate of epigenetic divergence between populations, which indicates far greater evolutionary stability of DNA methylation in humans than has been observed in plants. This study provides a deeper understanding of worldwide patterns of human epigenetic diversity, as well as initial estimates of the rate of epigenetic divergence in recent human evolution.
Project description:Epigenetic variation can impact gene transcription and may play roles in phenotypic diversity and adaptation. Here we report 1,107 high quality single-base resolution methylomes, and 1,210 transcriptomes from the 1001 Arabidopsis Genomes population. Analyses reveal strong effects of geographic origin on average DNA methylation levels, alterations of gene expression by epialleles and a highly complex genetic basis for DNA methylation. Physical genome maps for nine of the most diverse accessions revealed how transposable elements and other structural variations shaped the epigenome to allow rapid adaptation to environmental changes, with strong emphasis on disease resistance. Analysis of the cistromes and epicistromes in these accessions revealed a significant association between both methylation and nucleotide variation and the conservation of transcription factor binding sites. The Arabidopsis thaliana 1001 Epigenomes Project now provides a comprehensive resource to help further understand how epigenetic variation contributes to both molecular and phenotypes in natural populations of the most widely studied reference plant.
Project description:Gene expression varies between individuals and corresponds to a key step linking genotypes to phenotypes. Regulation of transcript and protein abundances can affect the final phenotypes and has been related to many human diseases. However, our knowledge regarding the species-wide genetic control of protein abundance, including its dependency on transcript levels, is very limited. Here, we have determined quantitative proteomes of a large population of 942 diverse natural Saccharomyces cerevisiae yeast isolates. We found that mRNA and protein abundances are weakly correlated at the population gene level (r = 0.165). While the protein co-expression network recapitulates the major biological functions, differential expression patterns reveal proteomic signatures related to specific populations, mainly domesticated. Most importantly, comprehensive genetic association analyses highlight that genetic variants associated with variation in protein (pQTL) and transcript (eQTL) levels poorly overlap (3.6%), with mostly common local QTL. Our results demonstrate that transcriptome and proteome are clearly two distinct layers of regulation, governed by distinct genetic bases in natural populations, and therefore highlight the importance of integrating these different levels of gene expression to better understand the genotype-phenotype relationship. This submission contains the raw files for the wild isolates collection, the library used for the analysis and the corresponding DIA-NN report and associated files.
Project description:Structural variation (SV) is a class of genetic variants involving long stretches of DNA and provides substantial innovations for adaptation and evolution. Investigation of SV profiles and turnover in nonhuman primates can help answer fundamental questions, such as what makes us uniquely human. Here, we present the high-resolution comparative 3D genome organizations of prefrontal cortex (PFC) of adult human and rhesus macaque. Based on a comprehensive SV atlas in rhesus macaque populations, we found that inversions are selectively constrained from the perspective of 3D genome, those inducing dramatic changes in chromosomal conformation tends to be purged by the action of purifying selection, implying the inconspicuous adaptive roles of inversions associated with strong effects. Furthermore, by integrating comparative genomics and multi-omics data across human and rhesus macaque, such as gene structures, regulatory elements and 3D genomic organizations, we highlighted a category of human-specific inversions with strong effects and found that they had undergone rapid fixation and caused significant changes in gene expression in human brain development, which may represent a driving force in human brain evolution. Overall, our findings reveal the great value of comparative 3D Hi-C maps in elucidating the adaptive functions of structural variants.
Project description:B lymphoblastoid cell lines were obtained from Coriell Cell Repositories. Cell lines were grown according to Coriell guidelines and total RNA was extracted, labeled, and hybridized to an Affymetrix Human Genome Focus Array as previously described. We found extensive variation in gene-expression levels and estimate that ~83% of genes are differentially expressed among individuals and that ~17% of genes are differentially expressed among populations. By decomposing total gene-expression variation into within- versus among-population components, we find that most expression variation is due to variation among individuals rather than among populations, which parallels observations of extant patterns of human genetic variation. Experiment Overall Design: We used microarrays to survey patterns of natural gene expression variation in 16 HapMap individuals derived from the CEU and YRI samples.
Project description:B lymphoblastoid cell lines were obtained from Coriell Cell Repositories. Cell lines were grown according to Coriell guidelines and total RNA was extracted, labeled, and hybridized to an Affymetrix Human Genome Focus Array as previously described. We found extensive variation in gene-expression levels and estimate that ~83% of genes are differentially expressed among individuals and that ~17% of genes are differentially expressed among populations. By decomposing total gene-expression variation into within- versus among-population components, we find that most expression variation is due to variation among individuals rather than among populations, which parallels observations of extant patterns of human genetic variation. Keywords: resting expression levels in B lymphoblastoid cell lines
Project description:Genome-wide patterns of variation across individuals provide a powerful source of data for uncovering the history of migration, range expansion, and adaptation of the human species. However, high-resolution surveys of variation in genotype, haplotype and copy number have generally focused on a small number of population groups. Here we report the analysis and public release of high-quality genotypes at 525,910 single-nucleotide polymorphisms (SNPs) and 396 copy-number-variable loci in a worldwide sample of 29 populations. Analysis of SNP genotypes yields strongly supported fine-scale inferences about population structure. Increasing linkage disequilibrium is observed with geographic distance from Africa, as expected under a serial founder effect for an out-of-Africa spread of human populations. New approaches for haplotype analysis produce inferences about population structure that complement results based on unphased SNPs. Despite a difference from SNPs in the frequency spectrum of the copy-number variants (CNVs) detected—including a comparatively large number of CNVs in previously unexamined populations from Oceania and the Americas—the global distribution of CNVs largely accords with population structure analyses for SNP data sets of similar size. Our results produce new inferences about inter-population variation, support the utility of CNVs in human population-genetic research, and serve as a genomic resource for human-genetic studies in diverse worldwide populations. Keywords: High Density SNP array
Project description:In addition to the differences between populations in transcriptional and translational regulation of genes, alternative pre-mRNA splicing (AS) is also likely to play an important role in regulating gene expression and generating variation in mRNA and protein isoforms. Recently, the genetic contribution to transcript isoform variation has been reported in individuals of recent European descent. We report here results of an investigation of the differences in AS patterns between human populations. AS patterns in 176 HapMap lymphoblastoid cell lines derived from individuals of European and African ancestry were evaluated using the Affymetrix GeneChip Human Exon 1.0 ST Array. A variety of biological processes such as immune response and mRNA metabolic process were found to be enriched among the differentially spliced genes. The differentially spliced genes also include some involved in human diseases that have different prevalence or susceptibility between populations. The genetic contribution to the population differences in transcript isoform variation was then evaluated by a genome-wide association using the HapMap genotypic data on single nucleotide polymorphisms (SNPs). The results suggest that local and distant genetic variants account for a substantial fraction of the observed transcript isoform variation between human populations.
2009-03-23 | GSE9703 | GEO
Project description:Validation of novel cancer structural variation patterns