Project description:As a sister genus to Taxus, Pseudotaxus holds significant importance for studying the origin and evolution of the taxane biosynthesis pathway. However, the reference genome of P. chienii, the sole species of Pseudotaxus, is not yet available. We have completed a chromosome-level genome assembly of P. chienii, with a total length of 15.6 Gb. P. chienii possesses only a partial pathway for Taxol biosynthesis, which terminates before the enzyme taxane 2α-O-benzoyl transferase (TBT), a crucial enzyme responsible for the production of 10-deacetylbaccatin III. With the emergence of the Taxus genus, the limitation posed by TBT is overcome, allowing for the extension of the existing taxane biosynthesis pathway into a complete Taxol biosynthesis pathway. Protein structure analysis revealed that the structure of metal ion catalysis sites in taxadiene synthase (TS) is conserved across the Pseudotaxus and Taxus genera, providing potential sites for enhancing TS activity through enzyme engineering. This comparative genomic analysis contributes to our understanding of the origin and evolution of taxane biosynthesis within the Taxaceae family.
Project description:The genome of Pseudotaxus chienii, a relict conifer endemic to China, provides insights into the origin and evolution of taxane biosynthesis
Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.