Project description:Comparative genomic analysis of a temporally and locally diverse set of S. enterica ssp I sv Paratyphi A isolates Keywords: ordered
Project description:This experiment set includes 64 arrays representing 26 serovars and strains of Salmonella spp. including many representatives of subspecies I, Arizona from subsp. IIIa, and S. bongori from subsp. V. The genomic DNA from all strains were labeled with Cy5 and hybridized against an equal amount (1.5 ug) of S. typhimurium SL1344 reference genomic DNA that was labeled with Cy3, all on an S. typhimurium SL1344 spotted DNA microarray. Most of the arrays are present in triplicate to account for variability in probe generation, hybridization, and slide quality. Several are represented in duplicate, and a few without any replicates. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set
2005-11-04 | GSE3564 | GEO
Project description:Salmonella Derby strains from Hangzhou, China
Project description:In this work, we applied an RNA analysis method, Selective Capture of Transcribed Sequences (SCOTS), and cDNA hybridization-microarray technology to identify S. Paratyphi A transcripts expressed by bacteria in the blood of three patients in Bangladesh. In total, we detected 1798 S. Paratyphi A mRNAs expressed in the blood of infected humans (43.9% of the ORFeome). Of these, we identified 868 in at least two patients, and 315 in all three patients. S. Paratyphi A transcripts identified in at least two patients encode proteins involved in energy metabolism, nutrient and iron acquisition, vitamin biosynthesis, stress responses, oxidative stress resistance, and pathogenesis. A number of detected transcripts are expressed from PhoP and SlyA-regulated genes associated with intra-macrophage survival, genes contained within Salmonella Pathogenicity Islands (SPIs) 1-4, 6, 10, 13, and 16, as well as RpoS-regulated genes. The largest category of identified transcripts are those encoding proteins with unknown function. When comparing level of bacterial mRNA detection using in vivo samples collected from infected patients to samples from in vitro grown organisms, we found significant differences for 347, 391, and 456 S. Paratyphi A transcripts in each of three individual patients (approximately 9.7% of the ORFeome). Of these, expression of 194 transcripts (4.7% of ORFs) was concordant in two or more patients, and 41 in all patients. Genes encoding these transcripts are contained within SPI-1, 3, 6 and 10, are PhoP-regulated genes, are involved in energy metabolism, nutrient acquisition, drug resistance, or are uncharacterized genes. Using quantitative RT-PCR, we confirmed increased gene expression in vivo for a subset of genes identified in our analyses. We compared transcriptional profiles of S. Paratyphi A from the blood of infected humans to S. Paratyphi A grown in vitro. Replicates and dye-swaps were performed.
Project description:Comparative genomic analysis of a temporally and locally diverse set of S. enterica ssp I sv Paratyphi A isolates Keywords: ordered