Project description:The root tip of rice before or after Al stress have been used. And some gense were regulated in this stress. We used microarrays to detail the global programme of gene expression underlying Al stress and identified distinct classes of up-regulated genes during this process.
Project description:Gene expression profile of response to auxin at 3 h after treatment in rice root tips: IR64 (loss-of-function of DRO1 type) vs Near-isogenic line homozygous for the Kinandang Patong allele of DRO1 in an IR64 genetic background (Dro1-NIL; gain-of-function of DRO1 type) We used two rice varieties, IR64 and near-isogenic line homozygous for the Kinandang Patong allele of DRO1 in an IR64 genetic background (Dro1-NIL). We performed comprehensive microarray analysis of rice root tips with auxin treatment (3h) and pre-treatment (0h) in IR64 and Dro1-NIL. Seedling root tips of IR64 and Dro1-NIL were treated with 10 M-BM-5M 2,4-D. n = 3 biological repeats (15 seedlings per repeat).
Project description:The aim of this study was to determine the changes in gene expression of rice root tips when they came in to contact with a hard layer (60% wax layer). Three categories of root tips were sampled; tips before the hard layer, tips that had come into contact with the hard layer and root tips which had buckled after coming into contact with the hard layer. Two genotypes (Azucena and Bala) that vary in there ability to penetrate a hard layer were selected for a genotype comparison of gene expression at the hard layer. Keywords: Genotype comparison, root impedance response
Project description:Gene expression profile of response to auxin at 3 h after treatment in rice root tips: IR64 (loss-of-function of DRO1 type) vs Near-isogenic line homozygous for the Kinandang Patong allele of DRO1 in an IR64 genetic background (Dro1-NIL; gain-of-function of DRO1 type)
Project description:The plant hormone gibberellin (GA) represents an important regulator of growth and development. Early transcriptional events controlled by GA are not well characterised. Previous microarray studies have identified genes responsive to GA treatment in the whole seedling. The whole seedling represents many tissues where subtle effects of GA treatment in specific tissues may be masked. When treated with GA, an effect on the growth rate of roots was observed. More specifically, the shorter root of a GA-deficient plant can be rescued to wild-type length by the application of GA. This experiment was designed to identify GA-regulated genes in the root tips of Arabidopsis. The use of a GA-deficient mutant provides a greater potential to identify genes responding to GA treatment. Root tips are ideally suited for the quick uptake of the hormone treatment. There will be two biological replicates which will each consist of a control treatment at 0 minutes and 2 hours, as well as the experimental GA-treated 2 hour time point. This system provides an opportunity to compare gene expression between treated and non-treated root tips and allow the identification of early GA-responsive genes.
Project description:Excess levels of Al3+ become highly harmful to plant roots. The epidermal and outer cortical layers of root-tips experience more severe damages than the inner tissues from Al toxicity. This project used laser capture microdissection (LCM) technology to isolate the outer and inner cell layers of cells in root-tips. Tomato "MicroTom" plants were grown in hydroponic solution supplemented with Al. Seeds derived from plants previously exposed to four generations of Al-treated solutions were considered stress-acclimated, these seeds were named G4Al+. Seeds harvested from soil-grown plants were also used, these seeds were named G0 seeds. Tandem mass tag (TMT) proteomics was used to identify differential proteomics responses among cells localized at different spaces in root-tips and those between the stress-acclimated and non-acclimated plants.
Project description:There are two main types of root systems in flowering plants, which are taproot systems in dicot and fibrous root systems in monocot. The cellular and molecular mechanism involved in root development are mainly from the study of dicot model Arabidopsis thaliana. However, mechanisms of root development and their conservation and divergence in monocot, which including the major crops, remain largely elusive. Here we profile the transcriptomes of more than 20,000 single cells in the root tips of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Single-cell analysis coupled with in situ hybridization identify the cell type-specific marker genes and annotate all the clusters. Comparison of single-cell transcriptome and analysis of mark gene expression suggest well-conserved molecular landscape between rice Nip and 93-11. Moreover, our analysis suggests specific functions gene expression patterns for each cell type cluster, including the hormone genes. Comparison to Arabidopsis single-cell RNA-sequencing dataset reveals extensive differences between Arabidopsis and rice cell types, and species-specific features emphasize the importance of directly studying rice root. Our study reveals transcriptome landscape of major cell types of rice root in singe-cell resolution and provides molecular insight of the cell type morphology of cell type evolution in plants.
Project description:There are two main types of root systems in flowering plants, which are taproot systems in dicot and fibrous root systems in monocot. The cellular and molecular mechanism involved in root development are mainly from the study of dicot model Arabidopsis thaliana. However, mechanisms of root development and their conservation and divergence in monocot, which including the major crops, remain largely elusive. Here we profile the transcriptomes of more than 20,000 single cells in the root tips of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Single-cell analysis coupled with in situ hybridization identify the cell type-specific marker genes and annotate all the clusters. Comparison of single-cell transcriptome and analysis of mark gene expression suggest well-conserved molecular landscape between rice Nip and 93-11. Moreover, our analysis suggests specific functions gene expression patterns for each cell type cluster, including the hormone genes. Comparison to Arabidopsis single-cell RNA-sequencing dataset reveals extensive differences between Arabidopsis and rice cell types, and species-specific features emphasize the importance of directly studying rice root. Our study reveals transcriptome landscape of major cell types of rice root in singe-cell resolution and provides molecular insight of the cell type morphology of cell type evolution in plants.
Project description:The plant hormone gibberellin (GA) represents an important regulator of growth and development. Early transcriptional events controlled by GA are not well characterised. Previous microarray studies have identified genes responsive to GA treatment in the whole seedling. The whole seedling represents many tissues where subtle effects of GA treatment in specific tissues may be masked. When treated with GA, an effect on the growth rate of roots was observed. More specifically, the shorter root of a GA-deficient plant can be rescued to wild-type length by the application of GA. This experiment was designed to identify GA-regulated genes in the root tips of Arabidopsis. The use of a GA-deficient mutant provides a greater potential to identify genes responding to GA treatment. Root tips are ideally suited for the quick uptake of the hormone treatment. There will be two biological replicates which will each consist of a control treatment at 0 minutes and 2 hours, as well as the experimental GA-treated 2 hour time point. This system provides an opportunity to compare gene expression between treated and non-treated root tips and allow the identification of early GA-responsive genes. 6 samples were used in this experiment.