Project description:Neisseria meningitidis is a major cause of bacterial meningitis and septicemia worldwide. Seven new serogroup C meningococci were isolated from two provinces of China in January, 2006. Their PorA VR types were P1.20, 9. Multilocus sequence typing results indicated that they all belonged to ST-7. It is a new serogroup C N. meningitidis sequence type clone identified in China. Here we also present the results of a genomic comparison of these isolates with other 15 N. meningitidis serogroup A and B isolates, which belonged to ST-7, based on comparative genomic hybridization analysis. The data described here would be helpful to monitor the spread of this new serogroup C meningococci sequence type clone in China and worldwide. Keywords: comparative genomic hybridization
Project description:Neisseria meningitidis is a major cause of bacterial meningitis and septicemia worldwide. Seven new serogroup C meningococci were isolated from two provinces of China in January, 2006. Their PorA VR types were P1.20, 9. Multilocus sequence typing results indicated that they all belonged to ST-7. It is a new serogroup C N. meningitidis sequence type clone identified in China. Here we also present the results of a genomic comparison of these isolates with other 15 N. meningitidis serogroup A and B isolates, which belonged to ST-7, based on comparative genomic hybridization analysis. The data described here would be helpful to monitor the spread of this new serogroup C meningococci sequence type clone in China and worldwide. Keywords: comparative genomic hybridization To compare the genome compositions of these menC ST-7 isolates with those of menC ST-4821 isolates, menA ST-7 isolates and menB ST-7 isolates, we performed comparative genomic hybridization (CGH) analysis among 17 N. meningitidis isolates (including two newly identified menC ST-7 isolates) using an updated version of the whole-genome microarray of N. meningitidis serogroup C isolate 053442 .
Project description:We designed a new specific mRNA microarray targeting a subset of genes (748) of the diazotrophs Richelia intracellularis and Calothrix rhizosoleniae (genomes RintRC01, RintHH01, RintHM01 and CalSC01) which associate with diatom hosts. The aim was to be able to describe the gene expressions of genes related to several metabolic pathways and how they possibly differed between the closely related strains based on environment and host association. To better understand how the different environments might affect gene expressions, the samples were taken in depth profiles, at night and day, during a cruise in the South China Sea.
Project description:Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood. This study examined transcriptomic and microbiome changes in shallow-water mussels Mytilus galloprovincialis exposed to deep-sea conditions at the Site-F cold seep in the South China Sea. Results reveal complex gene expression adjustments in stress response, immune defense, homeostasis, and energy metabolism pathways during adaptation. After 10 days of deep-sea exposure, shallow-water mussels and their microbial communities closely resembled those of native deep-sea mussels, demonstrating host and microbiome convergence in response to adaptive shifts. Notably, methanotrophic bacteria, key symbionts in native deep-sea mussels, emerged as a dominant group in the exposed mussels. Host genes involved in immune recognition and endocytosis correlated significantly with the abundance of these bacteria. Overall, our analyses provide insights into adaptive transcriptional regulation and microbiome dynamics of mussels in deep-sea environments, highlighting the roles of conserved genes and microbial community shifts in adapting to extreme environments.
Project description:Analysis of U251 glioblastoma multiforme (GBM) cells treated with a new culcita novaeguineae asterosaponion, CN-3. A new asterosaponin was isolated from culcita novaeguineae, an abundant marine resource in the south China sea. The asterosaponin induced significant growth inhibition with a 50% inhibitory concentration at 48 h of 2.013 μg/mL in U251MG cells. 1.8μg/mL of the asterosaponin reduced U251 MG cells viability from 100 % to 42.5% (24 h), 37.4% (48 h) and 52.1% (72 h). In this study, a microarray analysis was performed using RNA prepared from U251MG GBM cells treated with the asterosaponion. These data revealed that 661 genes had significant differential expressions.
Project description:We identified cis-regulatory elements based on their dynamic chromatin accessibility during the gastrula-larva stages of sea urchin and sea star and studied their evolution in these echinoderm species
2021-10-24 | GSE186363 | GEO
Project description:Terniopsis jianfengensis (Podostemaceae), a new species from Hainan, China based on morphological and genomic data
Project description:In this study, a whole-genome CombiMatrix Custom oligonucleotide tiling microarray with 90000 probes covering six sequenced Helicobacter pylori(H. pylori) genomes was designed and utilized for comparative genomic profiling of eight unsequenced strains isolated from patients with different gastroduodenal diseases in Heilongjiang province of China. Since significant genomic variation were found among these strains, an additional 76 H. pylori stains with different clinical outcomes isolated from various provinces of China were further tested by PCR to demonstrate this distinction. We observed several highly variable regions among strains of gastritis, gastric ulceration and gastric cancer. They are involved in genes associated with bacterial type I, type II and type III R-M system as well as in a virB gene neighboring the well studied cag pathogenic island. Previous studies have reported the diverse genetic characterization of this pathogenic island, but it is conserved in the strains tested by microarray in this study. Moreover, a number of genes involved in the type IV secretion system related to DNA horizontal transfer between H. pylori strains were identified based on the comparative analysis of the strain specific genes. These findings may provide new insights for discovering biomarkers for prediction of gastric diseases.
Project description:We used sea cucumber genomic data as a reference for utilizing TMT-based proteomics to perform differential comparison of protein expression between polian vesicle at 6h and 3 days post-evisceration and pre-evisceration in Apostichopus japonicus.
Project description:In this study, we presented a new HER2 protein detection method based on mass spectrometry selected reaction monitoring (MS-SRM), determined the upper and lower limits of HER2 expression detection, and validated the method. We conducted a retrospective study on 118 formalin-fixed paraffin-embedded (FFPE) tissues from patients with advanced gastric adenocarcinoma in northern China.