Project description:Clinical resection specimens of prostate tissue (radical prostatectomy and TUR-P) over the course of hormone deprivation therapy were flow sorted according to their DNA content (Ploidy) and subjected to aCGH analysis to identify possiple chromosomal abberations which could confer castration resistance.
Project description:To identify molecular singnal alterations between androgen dependent prostate cancer and castration resistant prostate cancer, we performed interspecies comparative microarray analyses using RNAs prepared from uncastrasion and castration tumor from LNCAP Orhotopic xenograft models of prostate cancer. microarray data from uncastrasion and castration tumor revealed that the gene expression profile is most significantly altered in between androgen dependent prostate cancer and castration resistant prostate cancer. Comparative analyses of LNCAP Orhotopic xenograft models of prostate cancer showed that genes involved in androgen dependent and androgen independent tumor were significantly altered. We prepared RNA samples from 4 samples uncastrasion and 4 samples castration tumors from LNCAP Orhotopic xenograft models of prostate cancer . High-quality RNA samples were subjected to microarray analysis using the Affymetrix Human Gene 2.0 ST platform, and only those results that passed examinations for quality assurance and quality control of the Human Gene 2.0 ST arrays were retrieved. In total, we obtained gene expression profiles from the following samples: 4 samples uncastrasion and 4 samples castration tumors
Project description:The number of circulating tumor cells (CTCs) in metastatic prostate cancer patients provides prognostic and predictive information. However, it is the molecular characterization of CTCs that offers insight into the biology of these tumor cells in the context of personalized treatment. We performed a pilot study to evaluate the feasibility of isolation and genomic profiling of CTCs in castration-resistant prostate cancer. CTCs in 7.5 mLs of blood in 20 castration-resistant metastatic prostate cancer patients were enumerated using CellSearch. Additional 10-20 mLs of blood from 12 patients positive for CTCs were subjected to immunomagnetic enrichment and fluorescence activated cell sorting (IE/FACS) to isolate pools of ~20 CTCs. Genomic DNA of CTCs was subjected to whole genome amplification followed by gene copy number analysis via array comparative genomic hybridization (aCGH). Archival primary tumor biopsy samples available from 2 patients were also subjected to aCGH.
Project description:Castration-resistant prostate cancer is a lethal disease. The cell type(s) that survive androgen-deprivation remain poorly described despite global efforts to understand the various mechanisms of therapy resistance. We recently identified in wild type mouse prostates a rare population of luminal progenitor cells that we called LSCmed according to their FACS profile (Lin?/Sca-1+/CD49fmed). Here we investigated the prevalence and castration resistance of LSCmed in various mouse models of prostate tumorigenesis. In intact mice, we show that LSCmed prevalence remains low (5-10% of epithelial cells) when prostatic androgen receptor signaling unaltered (malignant Hi-Myc mice) but significantly increases in models exhibiting reduced prostatic androgen receptor signaling, rising up to 30% in premalignant tumors (Pb-PRL mice) and to >80% in castration-resistant prostate tumors driven by Pten loss (Ptenpc-/- mice). LSCmed tolerance to androgen deprivation was demonstrated by their persistence (Ptenpc-/-) or further enrichment (Pb-PRL) 2-3 weeks after castration as evidenced by FACS analysis. Transcriptomic analysis revealed that LSCmed represent a unique cell entity as their gene-expression profile is different from luminal and basal/stem cells, but shares markers of each. Their intrinsic androgen signaling is markedly decreased, which explains why LSCmed tolerate androgen-deprivation. This also enlightens why Ptenpc-/- tumors are castration-resistant since LSCmed represent the most prevalent cell type in this model. We validated CK4 as a specific marker for LSCmed on sorted cells and prostate tissues by immunostaining, allowing for the detection of LSCmed in various mouse prostate specimens. In castrated Ptenpc-/- prostates, BrdU staining revealed massive proliferation of CK4+ cells, further demonstrating their key role in castration-resistant prostate cancer progression. In all, this study identifies LSCmed as a probable source of prostate cancer relapse after androgen deprivation and as a new therapeutic target for the prevention of castrate-resistant prostate cancer.
Project description:To identify molecular singnal alterations between androgen dependent prostate cancer and castration resistant prostate cancer, we performed interspecies comparative microarray analyses using RNAs prepared from uncastrasion and castration tumor from LNCAP Orhotopic xenograft models of prostate cancer. microarray data from uncastrasion and castration tumor revealed that the gene expression profile is most significantly altered in between androgen dependent prostate cancer and castration resistant prostate cancer. Comparative analyses of LNCAP Orhotopic xenograft models of prostate cancer showed that genes involved in androgen dependent and androgen independent tumor were significantly altered.
Project description:Understanding prostate response to castration and androgen receptor signaling inhibitors (ARSI) is critical to improving long-term prostate cancer (PCa) patient survival. We use a multi-omics approach on 229,794 single cells to create a mouse single-cell reference atlas better suited to interpreting mouse prostate biology and castration response. Our reference atlas refines single-cell annotations and provides chromatin context, which, when coupled with mouse lineage tracing demonstrates that the castration-resistant luminal cells are distinct from the pre-existent urethra- proximal stem/progenitor cells.
Project description:To investigate the mechanisms underlying castration-resistant prostate cancer (CRPC) development, we used a prostate cancer (PCa) allograft mouse model. In this model, an androgen-dependent (AD) mouse prostate cancer cell line, Myc-CaP, was used. Myc-CaP cells can grow as primary prostate tumors (PPC) in immune competent FVB mice in an AD manner, when host mice are castrated, Myc-CaP allografts shrink (shrunken prostate tumor, S-PC), and later re-grow and become AR-positive CRPC. To compare the gene expression of different stage of PCa, primary cells from PPC, S-PC, and CRPC were isolated and purified. We used RNA-seq to detail the global programme of gene expression underlying castration-resistant prostate cancer (CRPC) development and identified distinct classes of up-regulated or down-regulated genes during this process.
Project description:aCGH experiment on cell-free DNA collected from the plasma of patients with castration-resistant prostate cancer. No replicates. castration-resistant prostate cancer vs male reference DNA