Project description:The goal of this study was to use heterologous microarray hybridization to determine genomic content shared among different vesicomyid symbionts. These symbionts are closely related and can be thought of as different strains of bacteria, facilitating the use of heterologous microarray hybridization to determine genomic content. Keywords: comparative genomic hybridization
Project description:The goal of this study was to use heterologous microarray hybridization to determine genomic content shared among different vesicomyid symbionts. These symbionts are closely related and can be thought of as different strains of bacteria, facilitating the use of heterologous microarray hybridization to determine genomic content. Keywords: comparative genomic hybridization Microarrays were built off the Ruthia magnifica genome and two replicate hybridizations to this organism were used as a baseline for comparisons. Genomic DNA from two other vesicomyid symbionts (Calyptogena kilmeri and C. pacifica symbionts) was also hybridized to the array with three biological replicates for each sample.
Project description:Coral reefs are based on the symbiotic relationship between corals and photosynthetic dinoflagellates of the genus Symbiodinium. We followed gene expression of coral larvae of Acropora palmata and Montastraea faveolata after exposure to Symbiodinium strains that differed in their ability to establish symbioses. We show that the coral host transcriptome remains almost unchanged during infection by competent symbionts, but is massively altered by symbionts that fail to establish symbioses. Our data suggest that successful coral-algal symbioses depend mainly on the symbionts' ability to enter the host in a stealth manner rather than a more active response from the coral host.
Project description:Colonization of deep-sea hydrothermal vents by invertebrates was made efficient through their adaptation to a symbiotic lifestyle with chemosynthetic bacteria, the primary producers of these ecosystems. Anatomical adaptations such as the establishment of specialized cells or organs have been evidenced in numerous deep-sea invertebrates. However, very few studies detailed global inter-dependencies between host and symbionts in these ecosystems. In this study, we proposed to describe, using a proteo-transcriptomic approach, the effects of symbionts on the deep-sea mussel Bathymodiolus azoricus’ molecular biology. We induced an in situ depletion of symbionts and compared the proteo-transcriptome of the gills of mussels in three conditions: symbiotic mussels (natural population), symbiont-depleted mussels and aposymbiotic mussels