Project description:Lung cancer is one of the most common cancers in the world, which accounts for about 27% of all cancer deaths. However, the mechanisms underlying the pathogenesis of lung cancer cells remain largely elusive. In this study, we examined the role of the Forkhead box protein P1 (FOXP1) in lung cancer development. Our Oncomine analysis shows that FOXP1 is downregulated in lung adenocarcinoma compared with normal lung tissue. Knockdown of FOXP1 promotes the proliferation growth and invasion of PC9 and A549 cells by regulating genes of chemokine signaling molecules, including CCR1, ADCY5, GNG7, VAV3, and PLCB1. Simultaneous knockdown of CCR1 and FOXP1 attenuated FOXP1 knockdown-induced increase of lung cancer cell growth. Finally, knockdown of FOXP1 in PC9 cells promotes the tumorigenesis via CCR1 signaling in xenograft mouse model. Taken together, our data suggest that FOXP1 plays important roles in preventing lung adenocarcinoma development via suppressing chemokine signaling pathways. Novel strategies might be developed to prevent the development of lung adenocarcinoma by targeting FOXP1
Project description:Foxp1/4 transcription factors are conserved transcriptional repressors expressed in overlapping patterns during lung development as well as in the adult lung. However, the role of Foxp1/4 in development and homeostasis of the pseudostratified epithelium of the proximal airways and trachea is unknown. We propose to determine the roles for Foxp1/4 in lung development by deleting these genes in lung epithelial specific knockout mice. To explore the genome wide consequences of Foxp1/4 deficiency on secretory epithelial differentiation in the lung, we performed microarray analysis of Shh- cre control and Foxp1/4ShhcreDKO mutants lungs at E14.5, 3 embryos, respectively.
Project description:Foxp1/4 transcription factors are conserved transcriptional repressors expressed in overlapping patterns during lung development as well as in the adult lung. However, the role of Foxp1/4 in development and homeostasis of the pseudostratified epithelium of the proximal airways and trachea is unknown. We propose to determine the roles for Foxp1/4 in lung development by deleting these genes in lung epithelial specific knockout mice.
Project description:The model is based on publication:
Mathematical analysis of gefitinib resistance of lung adenocarcinoma caused by MET amplification
Abstract:
Gefitinib, one of the tyrosine kinase inhibitors of epidermal growth factor receptor (EGFR), is effective for treating lung adenocarcinoma harboring EGFR mutation; but later, most cases acquire a resistance to gefitinib. One of the mechanisms conferring gefitinib resistance to lung adenocarcinoma is the amplification of the MET gene, which is observed in 5–22% of gefitinib-resistant tumors. A previous study suggested that MET amplification could cause gefitinib resistance by driving ErbB3-dependent activation of the PI3K pathway. In this study, we built a mathematical model of gefitinib resistance caused by MET amplification using lung adenocarcinoma HCC827-GR (gefitinib resistant) cells. The molecular reactions involved in gefitinib resistance consisted of dimerization and phosphorylation of three molecules, EGFR, ErbB3, and MET were described by a series of ordinary differential equations. To perform a computer simulation, we quantified each molecule on the cell surface using flow cytometry and estimated unknown parameters by dimensional analysis. Our simulation showed that the number of active ErbB3 molecules is around a hundred-fold smaller than that of active MET molecules. Limited contribution of ErbB3 in gefitinib resistance by MET amplification is also demonstrated using HCC827-GR cells in culture experiments. Our mathematical model provides a quantitative understanding of the molecular reactions underlying drug resistance.
Project description:The NKX2-1 transcription factor, a regulator of normal lung development, is the most significantly amplified gene in human lung adenocarcinoma. To better understand how genomic alterations of NKX2-1 drive tumorigenesis, we generated an expression signature associated with NKX2-1 amplification in human lung adenocarcinoma, and analyzed DNA binding sites of NKX2-1 by genome-wide chromatin immunoprecipitation from NKX2-1-amplified human lung adenocarcinoma cell lines. Combining these expression and cistromic analyses identified LMO3, itself encoding a transcription regulator, as a candidate direct transcriptional target of NKX2-1, in addition to consensus binding motifs including a nuclear hormone receptor signature and a Forkhead box motif in NKX2-1-bound sequences. RNA interference analysis of NKX2-1-amplified cells compared to non-amplified cells demonstrated that LMO3 mediates cell proliferation downstream of NKX2-1; cistromic analysis that NKX2-1 may cooperate with FOXA1. Our findings provide new insight into the transcriptional regulatory network of NKX2-1 and suggest that LMO3 is a transducer of lineage specific cell survival of NKX2-1-amplified lung adenocarcinomas. NKX2-1 ChIP-seq from three lung adenocarcinoma cell lines with amplification of NKX2-1
Project description:Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. However, the contribution of AS to the control of embryonic stem cell (ESC) pluripotency is not well understood. Here, we identify an evolutionarily conserved ESC-specific AS event that changes the DNA binding preference of the forkhead family transcription factor FOXP1. We show that the ESC-specific isoform of FOXP1 stimulates the expression of transcription factor genes required for pluripotency including OCT4, NANOG, NR5A2 and GDF3, while concomitantly repressing genes required for ESC differentiation. Remarkably, this isoform also promotes the maintenance of ESC pluripotency and the efficient reprogramming of somatic cells to induced pluripotent stem cells. These results thus reveal that an AS switch plays a pivotal role in the regulation of pluripotency and functions by controlling critical ESC-specific transcriptional programs. To identify genes potentially directly regulated by FOXP1-ES and FOXP1 in H9 ESCs, we performed chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq). Using an antibody capable of efficiently immunoprecipitating both isoforms, >3400 significant ChIP-Seq peaks were detected across the human genome. To assess if these peaks are sites of FOXP1 and FOXP1-ES occupancy, we determined whether they are significantly enriched in individual PBM-derived 8-mers that bind to either or both isoforms.
Project description:GMDS is important for human lung adenocarcinoma progression, detailed molecular mechanisms remain elusive. We used microarray to detail the global gene expression changes in A549 cells with GMDS knockdown as compared to control cells