Project description:At the base of the intestinal crypt, long-lived Lgr5+ stem cells are intercalated by Paneth cells that provide essential niche signals for stem-cell maintenance. This unique epithelial anatomy makes the intestinal crypt one of the most accessible models for the study of adult stem cell biology. The glycosylation patterns of this compartment are poorly characterized and the impact of glycans on stem cell differentiation remains largely unexplored. We found that Paneth cells, but not Lgr5+ stem cells, express abundant terminal N-acetyllactosamine (LacNAc). Employing an enzymatic method to edit glycans in cultured crypt organoids, we assessed the functional role of LacNAc in the intestinal crypt. We show that blocking access to LacNAc on Paneth cells leads to hyperproliferation of the neighbouring Lgr5+ stem cells, which is accompanied by the down-regulation of genes that are known as negative regulators of proliferation
Project description:At the base of the intestinal crypt, long-lived Lgr5+ stem cells are intercalated by Paneth cells that provide essential niche signals for stem cell maintenance. This unique epithelial anatomy makes the intestinal crypt one of the most accessible models for the study of adult stem cell biology. The glycosylation patterns of this compartment are poorly characterized, and the impact of glycans on stem cell differentiation remains largely unexplored. We find that Paneth cells, but not Lgr5+ stem cells, express abundant terminal N-acetyllactosamine (LacNAc). Employing an enzymatic method to edit glycans in cultured crypt organoids, we assess the functional role of LacNAc in the intestinal crypt. We discover that blocking access to LacNAc on Paneth cells leads to hyperproliferation of the neighboring Lgr5+ stem cells, which is accompanied by the downregulation of genes that are known as negative regulators of proliferation.
Project description:Single-cell RNA-seq of engineered healthy human kidney organoids. These data are part of a larger investigation (data not provided here) showing that SARS-CoV-2 can directly infect engineered human blood vessel organoids and human kidney organoids which can be inhibited by human recombinant soluble ACE2 (hrsACE2), demonstrating that hrsACE2 can significantly block early stages of SARS-CoV-2 infections.
Project description:microRNA profiling of mouse small intestinal crypt cells comparing control untreated with cells treated with insulin growth factor-1 (IGF-1). IGF-1 stimulated cell proliferation, as observed in Brdu incoporation assay.
Project description:To compare miRNA expression profiles between freshly isolated intestinal epithelial cells and cultured organoids in mice. Intestinal organoids largely resembled intestinal epithelial cells in their miRNA profiles. Although the expression levels of some miRNAs were different between crypt and villus epithelial cells, such expression patterns were not reproduced during the maturation of intestinal organoids.
Project description:We profiled CRC organoids engineered with different combinations of driver mutations. All organoids were derived from one mouse and then mutations were sequentially introduced by CRISPR Cas9
Project description:Krüppel-like factor 9 (Klf9), a zinc-finger transcription factor, is implicated in the control of cell proliferation, cell differentiation and cell fate in brain and uterus. Using Klf9 null mutant mice, we have investigated the involvement of Klf9 in small intestine crypt-villus cell renewal and lineage determination. We report the predominant expression of Klf9 gene in small intestine smooth muscle (muscularis externa). Jejunums null for Klf9 have shorter villi, reduced crypt stem/transit cell proliferation, and altered lineage determination as indicated by decreased and increased numbers of Goblet and Paneth cells, respectively. A stimulatory role for Klf9 in villus cell migration was demonstrated by BrdU labeling. Results suggest that Klf9 controls the elaboration, from small intestine smooth muscle, of molecular mediator(s) of crypt cell proliferation and lineage determination, and of villus cell migration. Keywords: Genetic modification
Project description:microRNA profiling of mouse small intestinal crypt cells comparing control untreated with cells treated with insulin growth factor-1 (IGF-1). IGF-1 stimulated cell proliferation, as observed in Brdu incoporation assay. Two condition experiment. Control vs IGF-1 treatment. Biological replicates: 3 control, 3 treated. Independently grown and harvested. One replicate per array
Project description:Here we developed a method to incorporate a genetically engineered endothelial niche into an established protocol for generating human kidney organoids.