Project description:To investigate the knockdown effect of EZH2 and E2F6, RNA-sequencing (RNA-seq) was performed to analyze the genome-wide changes by the knockdown of EZH2 or E2F6 in CP70 ovarian cancer cells.
Project description:E2F6 plays oncogenic roles and in order to identify the molecular mechanism of E2F6 to promote tumorigenesis, RNA-seq was performed on Huh7 cells with or without E2F6.
Project description:Ras family oncogenes are mutated in approximately 30% of human cancers and cause resistance to multiple treatment modalities. While identifying methods to directly target mutant KRas have been challenging, targeting regulators of KRas may be beneficial. Using a systems approach of integrating a genome-wide miRNA screen with patient data of a phospho-proteomic signature of the KRas downstream pathway, we identified miR-193a-3p as a potent tumor suppressor capable of reversing KRas-related signaling, whereby the 3’UTR of KRas is directly targeted via two miR-193a-3p binding sites. Mechanistic studies revealed that miR-193a-3p inhibited the KRas protein signature, KRas downstream transcriptomic network, proliferation, induced a G1 arrest, and reduced colony formation in 3D cultures through direct targeting of KRas. An ex vivo lung cancer model showed that miR-193a-3p significantly reduced the viability of circulating tumor cells as well as decreased metastasis. In vivo studies revealed that miR-193a-3p significantly reduced tumor growth as well as metastasis of a KRas-mutant lung cancer xenograft model.
Project description:In mouse development, long-term silencing by CpG island DNA methylation is specifically targeted to germline genes, however the molecular mechanisms of this specificity remain unclear. Here we demonstrate that the transcription factor E2F6, a member of the polycomb repressive complex 1.6 (PRC1.6), is critical to target and initiate epigenetic silencing at germline genes in early embryogenesis. Genome-wide, E2F6 binds preferentially to CpG islands in embryonic cells. E2F6 cooperates with MGA to silence a subgroup of germline genes in mouse embryonic stem cells and in vivo, a function that critically depends on the E2F6 marked box domain. Inactivation of E2f6 leads to a failure to deposit CpG island DNA methylation at these genes during implantation. Furthermore, E2F6 is required to initiate epigenetic silencing in early embryonic cells but becomes dispensable for the maintenance in differentiated cells. Our findings elucidate the mechanisms of epigenetic targeting of germline genes and provide a paradigm for how transient repression signals by DNA-binding factors in early embryonic cells are translated into long term epigenetic silencing during mammalian development.
Project description:In the mouse, long-term silencing by CpG island DNA methylation is specifically targeted to germline genes in somatic cells, however the molecular mechanisms of this specificity remain unclear. Here we demonstrate that the transcription factor E2F6, a member of the polycomb repressive complex 1.6 (PRC1.6), is critical to target and initiate epigenetic silencing at germline genes in early embryogenesis. Genome-wide, E2F6 binds preferentially to CpG islands in embryonic cells. E2F6 cooperates with MGA to silence a subgroup of germline genes in mouse embryonic stem cells and in vivo, a function that critically depends on the E2F6 marked box domain. Furthermore, inactivation of E2f6 leads to a failure to deposit CpG island DNA methylation at these genes during implantation. Finally, we show that E2F6 is required to initiate epigenetic silencing in early embryonic cells but becomes dispensable for the maintenance in differentiated cells. Our findings elucidate the mechanisms of epigenetic targeting of germline genes and provide a paradigm for how transient repression signals by DNA-binding factors in early embryonic cells are translated into long term epigenetic silencing during mammalian development.
Project description:To investigate aberrant JAK/STAT signalling conferred epigenetic silencing of miR-193a, leading to overexpression of YWHAZ and metastasis in gastric cancer.
Project description:In order to develop novel biomarkers in prostate cancer, we applied a competing endogenous RNA (ceRNA) microarray to identify differentially expressed mRNAs, circRNAs and lncRNAs in PCa tissue.
Project description:Background & Aims: Serum microRNAs (miRNAs) levels are known to change in non-alcoholic fatty liver disease (NAFLD) and may serve as useful biomarkers. This study aimed to profile miRNAs comprehensively at all NAFLD stages. Methods:We profiled 2,083 serum miRNAs in a discovery cohort (183 NAFLD cases representing the complete NAFLD spectrum and 10 population controls). MiRNA libraries generated by HTG EdgeSeq were sequenced by Illumina NextSeq. Selected serum miRNAs were profiled in 372 additional NAFLD cases and 15 population controls by quantitative reverse transcriptase-polymerase chain reaction. Results: Levels of 275 miRNAs differed between cases and population controls. Fewer differences were seen within individual NAFLD stages but miR-193a-5p consistently the showed increased levels in all comparisons. Relative to NAFL/NASH with mild fibrosis (stage 0/1), three miRNAs (miR-193a-5p, miR-378d and miR378d) were increased in cases with NASH and clinically significant fibrosis (stage 2-4), seven (miR193a-5p, miR-378d, miR-378e, miR-320b, c, d & e) increased in cases with NAFLD Activity Score (NAS) 5-8 compared with lower NAS, and three (miR-193a-5p, miR-378d, miR-378e) increased but one (miR-19b-3p) decreased in steatosis, activity, and fibrosis "activity" (SAF-A) score 2-4 compared with lower SAF-A. The significant findings for miR-193a-5p were replicated in the additional NAFLD cohort. Studies in Hep G2 cells showed that following palmitic acid treatment, miR-193a-5p expression decreased significantly. Gene targets for miR-193a-5p were investigated in liver RNAseq data for a case subgroup (n=80); liver GPX8 levels correlated positively with serum miR-193a-5p. Conclusions: Serum miR-193a-5p levels correlate strongly with NAFLD activity grade and fibrosis stage. MiR-193a-5p may have a role in the hepatic response to oxidative stress and is a potential clinically tractable circulating biomarker for progressive NAFLD.
Project description:We have investigated the proteome changes induced by SOX4 overexpression in HCT-116 cells using iTRAQ-based quantitative proteomics. Bioinformatics analysis revealed that HDAC1 could be one of the important regulators in cancer stem cells (CSCs) maintenance. We found that SOX4 transcriptionally regulates HDAC1 to support the stemness of cancer stem cells (CSCs). This work revealed a novel underlying mechanism, SOX4-HDAC1 axis, for stemness maintenance of human cancer.