Project description:Mycobacterium marinum infection in zebrafish (Danio rerio) has been widely used to study human tuberculosis because the bacteria causing these two diseases are close relatives. We studied the zebrafish immune response to M. marinum infection through a whole-genome level transcriptome analysis. As expected based on the literature, our results showed the induction of genes coding proteins associated to immune signaling, cell migration and acute phase response indicating that the immune response to M. marinum infection in zebrafish is similar than the response to tuberculosis causing Mycobacterium tuberculosis in humans.
Project description:The mechanisms of action of compound 8 in Mycobacterium marinum although it inhibits the secretion of the bacteria. In this experiment, we aim to investigated the effect of compound 8 on the global gene expression of Mycobacterium marinum
Project description:We use the zebrafish embryo model to study the innate immune response against Mycobacterium marinum. Therefore, we injected M. marinum into the yolk at the 64 cell stage and took samples at 5 days post injection. This deep sequence study was designed to determine the gene expression profile by Mycobacterium marinum infection. RNA was isolated from embryos at 5 days post injection. Wildtypes zebrafish embryos were micro-injected into the yolk (64 cell stage) with 40 CFU of Mycobacterium marinum E11 mCherry bacteria suspended in PVP (Polyvinylpyrrolidone), or Non-injected as a control. After injections embryos were transferred into fresh egg water and incubated at 28M-BM-0C. At 5 days post injection 50 embryos per group were snap-frozen in liquid nitrogen, and total RNA was isolated using TRIZOL reagent.
Project description:We use the zebrafish embryo model to study the innate immune response against Mycobacterium marinum. Therefore, we injected M. marinum into the yolk at the 64 cell stage and took samples at 5 days post injection.
Project description:This study reports on infection-inducible miRNAs in zebrafish. Using a custom-designed microarray platform for miRNA expression we found that miRNAs of the miR-21, miR-29, and miR-146 families were commonly induced by infection of zebrafish embryos with Salmonella typhimurium and by infection of adult fish with Mycobacterium marinum. A custom-designed Agilent zebrafish 8x15k miRNA platform was used to profile miRNA expression in zebrafish embryos infected with Salmonella typhimurium strain SL1027 and adult zebrafish infected with Mycobacterium marinum strain Mma20 . The 15k design contained a duplicate of 7604 probes of 60-oligonucleotide length. The probes consisted of 2x22 nucleotide sequences antisense to mature miRNAs separated by a spacer of 8 nucleotides (CGATCTTT) and with a second spacer with the same sequence at the end. From 7604 probes 546 were designed for left (5') and right (3') arms of the hairpins of zebrafish miRNAs known in miRBase, while the remainder 7058 probes corresponded to predicted hairpin structures in the zebrafish genome that might include additional miRNAs but were not considered in this study. Zebrafish embryos were infected at 28 hours post fertilization (hpf) by injecting 200-250 colony forming units of Salmonella typhimurium into the caudal vein and miRNA profiles of infected embryos were compared to control embryos injected with PBS (phosphate buffered saline) at 8 hours post-infection (hpi; 3 biological replicates and 2 technical replicates per each sample). Adult zebrafish were infected with 10000 colony forming units of Mycobacterium marinum and miRNA profiles were compared to PBS-injected control fish at 6 days post infection (dpi; 3 biological replicates). For dual color hybridization of the Agilent chips miRNA samples from infected zebrafish were labeled with Hy3 and samples from control fish were labeled with Hy5.
Project description:Detection of species-specific proteotypic peptides for accurate and easy characterization of infectious non-tuberculous mycobacteria such as Mycobacterium avium subsp. paratuberculosis, Mycobacterium marinum and Mycobacterium vaccae is essential. Therefore, we carried out reanalysis of publicly available M. avium subsp. paratuberculosis, M. marinum and M. vaccae proteomic dataset PXD027444, PXD003766 and PASS00954 by proteome database search and followed by spectral library generation. The raw DDA data were searched against their respective reference proteome databases using Proteome Discoverer and FragPipe. The resulting peptide spectrum matches were converted into a spectral library using BiblioSpec.
Project description:Mycobacterium avium is the most common nontuberculous mycobacterium (NTM) species causing infectious disease. Here, we characterized a M. avium infection model in zebrafish larvae, and compared it to M. marinum infection, a model of tuberculosis. Using RNAseq analysis, we found a distinct transcriptome response in cytokine-cytokine receptor interaction for M. avium and M. marinum infection. In addition, we found substantial differences in gene expression in metabolic pathways, phagosome formation, matrix remodeling, and apoptosis in response to these mycobacterial infections.
Project description:Understanding the regulatory roles of small RNAs (sRNAs) in Mycobacterium marinum is crucial for elucidating its pathogenesis. Here, we present transcriptome profiles of M. marinum strains with deletions and completions of sRNA B11. Through RNA sequencing analysis, we identified significant alterations in gene expression patterns between the B11-deleted and completed strains.