Project description:H3K27me3 ChIP-seq was performed on: 1) untreated SH-SY5Y human neuroblastoma cells (day 0) 2) vincristine-treated SH-SY5Y human neuroblastoma cells (7 days of treatment - day 7) 3) vincristine-treated SH-SY5Y human neuroblastoma cells (7 days of treatment + 7 days of recover - day 14)
Project description:The aim of the experiment is to identify genome wide binding sites for the transcription factor MYCN in MYCN non-amplified and MYCN amplified human neuroblastoma cell lines. Datasets are presented for the ChIP-seq analysis in the tetracycline inducible cell line SH-SY5Y-MYCN (SH-SY5Y/6TR(EU)/pTrex-Dest-30/MYCN), derivative of the parental cell line SH-SY5Y; for noninduced cells and for 24 and 48 hours of Tet induction. Analysis for patinet matched MYCN amplified cell lines SMS-KCN and SMS-KCNR is also included.
Project description:To investigate the effect of SARS-CoV-2 spike RBD on the transcription of nascent RNA in nerve cells, we treated SH-SY5Y cells with RBD and extracted nascent RNA for RNA-seq. We then performed gene expression profiling analysis using data obtained from RNA-seq of SH-SY5Y cells at two time points.
Project description:RNA-sequencing was performed on the following human neuroblastoma cell lines: Kelly, NBL-S, CHP-212, SH-SY5Y, SH-SY5Y LDK-resistant and SH-EP.
Project description:We analyzed the chromatin occupancies of active (H3K27ac and H3K4me3) and repressive (H3K27me3) histone marks in adrenergic (SH-SY5Y parental) and mesenchymal (SH-SY5Y LDK-resistant and SH-EP) neuroblastoma cells.
Project description:iCLIP experiments tomap the RNA binding sites of the RNA-binding protein Unkempt across the transcriptome in SH-SY5Y cells, HeLa cells with ectopic Unk expression and mouse E15 embryonic brain samples. Expression of Unk is normally largely restricted to the nervous system. We therefore mapped the binding sites in human SH-SY5Y and mouse E15 brain to detect its physiological binding sites (in SH-SY5Y, we also performed the RNAseq experiment upon Unk knockdown). HeLa cells on the other hand normally don't express Unk, but convert to neuron-like shape when the protein is ectopically expressed. So, here we hoped to identify those binding events (and hence target transcripts) that are critical for this morphological transformation.
Project description:Background: SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA), but the molecular mechanism of activation in the signaling pathway mediated by phosphatidylinositol 3-kinase (PI3K) is not sufficiently understood. To shed new light on the mechanism, we comprehensively compared the gene expression profiles between SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E), each of which showed a different phenotype during RA-mediated differentiation. Results: SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E cells required additional treatment with brain-derived neurotrophic factor (BDNF) for full differentiation. In combination with perturbation using a PI3K inhibitor, LY294002, we identified 386 genes and categorized them into two clusters dependent on the PI3K signaling pathway during RA-mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster was greatly reduced in SK-N-SH cells or partially impaired in SH-SY5Y-E cells in coincidence with a defect in the neuronal phenotype of these cell lines. Additional stimulation with BDNF induced a set of neural genes which were down-regulated in RA-treated SH-SY5Y-E cells but were abundant in the differentiated SH-SY5Y-A cells. Conclusions: We identified the gene clusters controlled by PI3K- and TRKB-mediated signaling pathways during differentiation in two subtypes of SH-SY5Y cells. TRKB-mediated bypass pathway compensates for the impaired neural functions generated by defects in several signaling pathways including PI3K in SH-SY5Y-E cells. The expression profiling data are useful for further studies to elucidate the signal transduction-transcriptional network including PI3K and/or TRKB. Keywords: Cell type comparison, time course
Project description:To investigate atrazine induced transcriptomes in SH-SY5Y cells Total RNA obtained from SH-SY5Y cells were treated with control vehicle (DMSO) or atrazine (ATZ).