Project description:RNA-sequencing was performed on the following human neuroblastoma cell lines: Kelly, NBL-S, CHP-212, SH-SY5Y, SH-SY5Y LDK-resistant and SH-EP.
Project description:H3K27me3 ChIP-seq was performed on: 1) untreated SH-SY5Y human neuroblastoma cells (day 0) 2) vincristine-treated SH-SY5Y human neuroblastoma cells (7 days of treatment - day 7) 3) vincristine-treated SH-SY5Y human neuroblastoma cells (7 days of treatment + 7 days of recover - day 14)
Project description:We analyzed the chromatin occupancies of active (H3K27ac and H3K4me3) and repressive (H3K27me3) histone marks in adrenergic (SH-SY5Y parental) and mesenchymal (SH-SY5Y LDK-resistant and SH-EP) neuroblastoma cells.
Project description:iCLIP experiments tomap the RNA binding sites of the RNA-binding protein Unkempt across the transcriptome in SH-SY5Y cells, HeLa cells with ectopic Unk expression and mouse E15 embryonic brain samples. Expression of Unk is normally largely restricted to the nervous system. We therefore mapped the binding sites in human SH-SY5Y and mouse E15 brain to detect its physiological binding sites (in SH-SY5Y, we also performed the RNAseq experiment upon Unk knockdown). HeLa cells on the other hand normally don't express Unk, but convert to neuron-like shape when the protein is ectopically expressed. So, here we hoped to identify those binding events (and hence target transcripts) that are critical for this morphological transformation.
Project description:Non-structural 2B protein of enterovirus-A71 has reported involving in intracellular Ca2+ manipulation and altering cellular homeostasis such as inducing cell death in human SH-SY5Y cells. The aim of the study is to profile transcriptomic signature of human neuroblastoma SH-SY5Y cells altered by EV-A71 2B protein using RNA-sequencing analysis. We generated mRNA expression profiles of SH-SY5Y cells transfected with EV-A71 2B protein fused with mCherry and FLAG tag protein (2BmCherry) and mCherry as well as parental SH-SY5Y cells. We find that 7 genes including CCL2, RELB, IL32, PLAT, PTGES, PHLDA1, and TNFRSF9 are uniquely overexpressed in 2BmCherry comparing to mCherry. Moreover, there were 333 upregulated and 333 downregulated genes showed significant different expression level in 2BmCherry transcriptome in comparison with SHSY5Y transcriptome but not in mCherry vs SHSY5Y comparison. Functional analysis showed that EV-A71 2B upregulated genes involved Ca2+-related signaling pathways participating gene expression, immune response, apoptosis, and long-term potentiation (synaptic adaptation) of neuron in the transfected SH-SY5Y cells.
Project description:Background: SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA), but the molecular mechanism of activation in the signaling pathway mediated by phosphatidylinositol 3-kinase (PI3K) is not sufficiently understood. To shed new light on the mechanism, we comprehensively compared the gene expression profiles between SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E), each of which showed a different phenotype during RA-mediated differentiation. Results: SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E cells required additional treatment with brain-derived neurotrophic factor (BDNF) for full differentiation. In combination with perturbation using a PI3K inhibitor, LY294002, we identified 386 genes and categorized them into two clusters dependent on the PI3K signaling pathway during RA-mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster was greatly reduced in SK-N-SH cells or partially impaired in SH-SY5Y-E cells in coincidence with a defect in the neuronal phenotype of these cell lines. Additional stimulation with BDNF induced a set of neural genes which were down-regulated in RA-treated SH-SY5Y-E cells but were abundant in the differentiated SH-SY5Y-A cells. Conclusions: We identified the gene clusters controlled by PI3K- and TRKB-mediated signaling pathways during differentiation in two subtypes of SH-SY5Y cells. TRKB-mediated bypass pathway compensates for the impaired neural functions generated by defects in several signaling pathways including PI3K in SH-SY5Y-E cells. The expression profiling data are useful for further studies to elucidate the signal transduction-transcriptional network including PI3K and/or TRKB. Keywords: Cell type comparison, time course
Project description:To investigate atrazine induced transcriptomes in SH-SY5Y cells Total RNA obtained from SH-SY5Y cells were treated with control vehicle (DMSO) or atrazine (ATZ).
Project description:Background: SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA), but the molecular mechanism of activation in the signaling pathway mediated by phosphatidylinositol 3-kinase (PI3K) is not sufficiently understood. To shed new light on the mechanism, we comprehensively compared the gene expression profiles between SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E), each of which showed a different phenotype during RA-mediated differentiation. Results: SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E cells required additional treatment with brain-derived neurotrophic factor (BDNF) for full differentiation. In combination with perturbation using a PI3K inhibitor, LY294002, we identified 386 genes and categorized them into two clusters dependent on the PI3K signaling pathway during RA-mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster was greatly reduced in SK-N-SH cells or partially impaired in SH-SY5Y-E cells in coincidence with a defect in the neuronal phenotype of these cell lines. Additional stimulation with BDNF induced a set of neural genes which were down-regulated in RA-treated SH-SY5Y-E cells but were abundant in the differentiated SH-SY5Y-A cells. Conclusions: We identified the gene clusters controlled by PI3K- and TRKB-mediated signaling pathways during differentiation in two subtypes of SH-SY5Y cells. TRKB-mediated bypass pathway compensates for the impaired neural functions generated by defects in several signaling pathways including PI3K in SH-SY5Y-E cells. The expression profiling data are useful for further studies to elucidate the signal transduction-transcriptional network including PI3K and/or TRKB. Experiment Overall Design: Human neuroblastomas, SK-N-SH (HTB-11) and SH-SY5Y-A cells (CRL-2266) were obtained from the American Type Culture Collection (ATCC). We also obtained SH-SY5Y-E cells (EC94030304) from the European Collection of Cell Cultures (ECACC). Tissue culture cells were maintained in D-MEM/F12 1:1 mixture supplemented with 15% FBS (Fetal Bovine Serum) and 1% NEAA (Non-essential amino acid) in a 5% CO2 humidified incubator at 37oC. The culture medium was changed twice a week. For the RA-inducible experiment, random culture cells from two clone subtypes of SH-SY5Y and SK-N-SH were seeded in laminin coated culture dishes (BioCoat Laminin Cellware; BD Biosciences, Billerica, MA, USA) for 1 day and then transferred to a medium containing 10 μM of RA in the presence or the absence of LY294002 (10μM) for five days. For BDNF-induced sequential differentiation of the SH-SY5Y-E strain, cells were washed with D-MEM/F12 twice after five days in the presence of RA and then incubated with 50 ng/ml of BDNF in D-MEM/F12 without serum for three days.