Project description:The roots of halophytes such as mangroves provide the first line of defense against the constant salt stress they experience. Such adaptation should include major reprogramming of the gene expression profiles. Using RNA-sequencing approach we identified 101,446 ‘all-unigenes’ from the seedling roots of the mangrove tree Avicennia officinalis. From the data 6618 genes were identified to be differentially regulated by salt when two-month-old greenhouse-grown seedlings without prior exposure to sea water were subjected to 24 h of 500 mM NaCl treatment. About 1,404 genes were significantly up-regulated, while 5214 genes were down-regulated. Based on Gene Ontology analysis, they could be classified under various categories, including metabolic processes, stress and defense response, signal transduction, transcription-related and transporters. Our analysis provides the baseline information towards understanding salt balance in mangroves and hence mechanism of salt tolerance in plants.
Project description:Lactobacillus casei is remarkably adaptive to diverse habitats. To understand the evolution and adaptation of Lb. casei strains isolated from different environments, the gene content of 22 Lb. casei strains isolated from various habitats (cheeses, n=8; plant materials, n=8; and human sources, n=6) were examined by comparative genome hybridization with an Lb. casei ATCC 334-based microarray.