Project description:The goals of this study are to compare the transcriptomic response of a E. coli strain with a mutation in the promotor region of the outer membrane porins regulator ompR-envZ that has an increased resistance to ammonia released by a Streptomyces strain.
Project description:Volatiles of certain rhizobacteria can cause growth inhibitory effects on plants/ Arabidopsis thaliana. How these effects are initiated and which mechanisms are enrolled is not yet understood. Obviously the plant can survive/live with the bacteria in the soil, which suggest the existance of a regulatory mechanism/network that provide the possibility for coexistance with the bacteria. To shed light on this regulatory mechanism/network we performed a microarray anlaysis of Arabidopsis thaliana co-cultivated with two different rhizobacteria strains. In this study we used the ATH1 GeneChip microarray to investigate the transcriptional response of 4 to 5 days old Arabidopsis thaliana seedlings at 6 h, 12 h and 24 h exposure to volatiles of the rhizobacteria Serratia plymuthica HRO-C48 or Stenotrophomonas maltophilia R3089.
Project description:Volatiles of certain rhizobacteria can cause growth inhibitory effects on plants/ Arabidopsis thaliana. How these effects are initiated and which mechanisms are enrolled is not yet understood. Obviously the plant can survive/live with the bacteria in the soil, which suggest the existance of a regulatory mechanism/network that provide the possibility for coexistance with the bacteria. To shed light on this regulatory mechanism/network we performed a microarray anlaysis of Arabidopsis thaliana co-cultivated with two different rhizobacteria strains. In this study we used the ATH1 GeneChip microarray to investigate the transcriptional response of 4 to 5 days old Arabidopsis thaliana seedlings at 6 h, 12 h and 24 h exposure to volatiles of the rhizobacteria Serratia plymuthica HRO-C48 or Stenotrophomonas maltophilia R3089. Seedlings from Arabidopsis thaliana were harvested at different time points at exposure to volatiles of two different strains of bacteria. Samples were taken at the start of the experiment (T0) and after 6, 12 and 24 hours (T6, T12, T24 respectively). Two biological replicates from pooled seedlings (from 5 plates, from the respective time points) were used for RNA extraction and hybridization on Affymetrix microarrays (ATH1 GeneChip; GEO accsession GPL198).
Project description:Transcriptomes of Two Esca Relevant Fungi, Phaeoacremonium aleophilum and Phaeomoniella chlamydospora, Respond Very Differently to Co-cultured Vitis callus Culture
Project description:In order to understand how P.al and P.ch respond to the environment set by V. vinifera we analyzed the transcriptomes of two fungi in axenic or mixed cultures with V. vinifera plant cells (callus culture). We could observe that these fungi respond with different strategies to the plant cell challange where P.ch induces de-toxification and translation machinery genes and P.al alters primary metabolism and induces heat shock related genes. Two fungal strains where co-inoculated with V. vinivera callus, each experiment was repeated
Project description:In order to understand how P.al and P.ch respond to the environment set by V. vinifera we analyzed the transcriptomes of two fungi in axenic or mixed cultures with V. vinifera plant cells (callus culture). We could observe that these fungi respond with different strategies to the plant cell challange where P.ch induces de-toxification and translation machinery genes and P.al alters primary metabolism and induces heat shock related genes.
Project description:Temperature variation structures the composition and diversity of gut microbiomes in ectothermic animals, key regulators of host physiology, with potential benefit to host or lead to converse results (i.e., negative). So, the significance of either effect may largely depend on the length of time exposed to extreme temperatures and how rapidly the gut microbiota can be altered by change in temperature. However, the temporal effects of temperature on gut microbiota have rarely been clarified. To understand this issue, we exposed two juvenile fishes (Cyprinus carpio and Micropterus salmoides), which both ranked among the 100 worst invasive alien species in the world, to increased environmental temperature and sampled of the gut microbiota at multiple time points after exposure so as to determine when differences in these communities become detectable. Further, how temperature affects the composition and function of microbiota was examined by comparing predicted metagenomic profiles of gut microbiota between treatment groups at the final time point of the experiment. The gut microbiota of C. carpio was more plastic than those of M. salmoides. Specifically, communities of C. carpio were greatly altered by increased temperature within 1 week, while communities of M. salmoides exhibit no significant changes. Further, we identified 10 predicted bacterial functional pathways in C. carpio that were temperature-dependent, while none functional pathways in M. salmoides was found to be temperature-dependent. Thus, the gut microbiota of C. carpio was more sensitive to temperature changes and their functional pathways were significantly changed after temperature treatment. These results showed the gut microbiota of the two invasive fishes differ in response to temperature change, which may indicate that they differ in colonization modes. Broadly, we have confirmed that the increased short-term fluctuations in temperatures are always expected to alter the gut microbiota of ectothermic vertebrates when facing global climate change.
Project description:Temperature type is one of the key traits determining the cultivation regime of Lentinula edodes. However, the molecular and metabolic basis underling temperature type remain unclear. Here, we investigated the phenotypic, transcriptomic, and metabolic features of L. edodes with different temperature types under both control (25 °C) and high (37 °C) temperature conditions. We found that under the control condition, the high- and low-temperature types of L. edodes harbored distinct transcriptional and metabolic profiles. The high-temperature (H-)-type strain had a higher expression level of genes involved in the toxin processes and carbohydrate binding, while the low-temperature (L-)-type strain had a high expression level of oxidoreductase activity. Heat stress significantly inhibited the growth of both H- and L-type strains, while the latter had a higher growth inhibition rate. Upon exposure to heat, the H-type strain significantly up-regulated genes associated with the components of the cellular membrane, whereas the L-type strain markedly up-regulated genes involved in the extracellular region and carbohydrate binding. Metabolome data showed that thermostress altered purine and pyrimidine metabolism in the H-type strain, whereas it altered cysteine, methionine, and glycerophospholipid metabolism in the L-type strain. Transcriptome and metabolome integrative analysis was able to identify three independent thermotolerance-related gene-metabolite regulatory networks. Our results deepen the current understanding of the molecular and metabolic basis underlying temperature type and suggest, for the first time, that thermotolerance mechanisms can be temperature-type-dependent for L. edodes.
Project description:To find a promoter upregulated in the presence of rotten meat, we exposed B. subtilis 168 to the volatiles of rotten meat (mixed beef/pork) and performed a microarray comparing it to B. subtilis which was not exposed to the meat. The results where used to build iGEM Groningen 2012s Food Warden, a spoiled meat detector. Find more information at: 2012.igem.org/Team:Groningen
Project description:To find a promoter upregulated in the presence of rotten meat, we exposed B. subtilis 168 to the volatiles of rotten meat (mixed beef/pork) and performed a microarray comparing it to B. subtilis which was not exposed to the meat. The results where used to build iGEM Groningen 2012s Food Warden, a spoiled meat detector. Find more information at: 2012.igem.org/Team:Groningen One condition design; including dye swap, two technical replicates and two experimental replicates