Project description:In general, RNA-binding proteins act to modulate gene expression at transcript level through degradation or at protein level through translation. To elucidate the effect of Whi3, a yeast RNA binding protein, on gene expression, we performed ribosome profiling experiment on whi3 mutant and wildtype cells. Comparison ribosome profiling and RNA-seq data between whi3 mutant and wildtype cells
Project description:In general, RNA-binding proteins act to modulate gene expression at transcript level through degradation or at protein level through translation. To elucidate the effect of Whi3, a yeast RNA binding protein, on gene expression, we performed ribosome profiling experiment on whi3 mutant and wildtype cells.
Project description:Although protein synthesis dynamics has been studied both with theoretical models and by profiling ribosome footprints, the determinants of ribosome flux along open reading frames (ORFs) are not fully understood. Combining measurements of protein synthesis rate with ribosome footprinting data, we here inferred translation initiation and elongation rates for over a thousand ORFs in exponentially-growing wildtype yeast cells. We found that the amino acid composition of synthesized proteins is as important a determinant of translation elongation rate as parameters related to codon and tRNA adaptation. We did not find evidence of ribosome collisions curbing the protein output of yeast transcripts, either in high translation conditions associated with exponential growth, or in strains in which deletion of individual ribosomal protein genes leads to globally increased or decreased translation. Slow translation elongation is characteristic of RP-encoding transcripts, which have markedly lower protein output compared to other transcripts with equally high ribosome densities.
Project description:Ribosome profiling has emerged as a powerful method to assess global gene translation, but methodological and analytical challenges often lead to inconsistencies across labs and model organisms. A critical issue in ribosome profiling is nuclease treatment of ribosome-mRNA complexes, as it is important to ensure both stability of ribosomal particles and complete conversion of polysomes to monosomes. We performed comparative ribosome profiling in yeast and mice with various ribonucleases including I, A, S7 and T1, characterized their cutting preferences, trinucleotide periodicity patterns, and coverage similarities across coding sequences, and showed that they yield comparable estimations of gene expression when ribosome integrity is not compromised. However, ribosome coverage patterns of individual transcripts had little in common between the ribonucleases. We further examined their potency at converting polysomes to monosomes across other commonly used model organisms, including bacteria, nematodes and fruit flies. In some cases, ribonuclease treatment completely degraded ribosome populations. Ribonuclease T1 was the only enzyme that preserved ribosomal integrity while thoroughly converting polysomes to monosomes in all examined species. This study provides a guide for ribonuclease selection in ribosome profiling experiments across most common model systems
Project description:During translation elongation, the ribosome ratchets along its mRNA template, incorporating each new amino acid and translocating from one codon to the next. The elongation cycle requires dramatic structural rearrangements of the ribosome. We show here that deep sequencing of ribosome-protected mRNA fragments reveals not only the position of each ribosome but also, unexpectedly, its particular stage of the elongation cycle. Sequencing reveals two distinct populations of ribosome footprints, 28-30 nucleotides and 20-22 nucleotides long, representing translating ribosomes in distinct states, differentially stabilized by specific elongation inhibitors. We find that the balance of small and large footprints varies by codon and is correlated with translation speed. The ability to visualize conformational changes in the ribosome during elongation, at single-codon resolution, provides a new way to study the detailed kinetics of translation and a new probe with which to identify the factors that affect each step in the elongation cycle. Ribosome profiling, or sequencing of ribosome-protected mRNA fragments, in yeast. We assay ribosome footprint sizes and positions in three conditions: untreated yeast (3 replicates) and yeast treated with translation inhibitors cycloheximide (2 replicates) and anisomycin (2 biological replicates, one technical replicate). We also treat yeast with 3-aminotriazole to measure the effect of limited histidine tRNAs on ribosome footprint size and distribution (two treatment durations).