Project description:WHSC1 catalyzes dimethylation of lysine 36 on histone H3, which is upregualted in germinal center B cells. This study aimed to understand the H3K36me2 genome-wide alterations by analysing CHIP-seq data between wt and ko germinal center B cells.
Project description:The goal of this study was to invetigate the mechanisms by which nsd2 regulate germinal center reaction by comparing RNA-seq data between nsd2 wt and ko germinal center B cells
Project description:Follicular helper T cell (Tfh) provide essential help for humoral immune response. However, how Tfh differentiation is epigenetically regulated remains incompletely understood. Here we found that H3K36me2 methyltransferase Nsd2 is required for Tfh differentiation. Lack of Nsd2 leads to reduced Tfh generation and germinal center response. Mice with Nsd2 deficiency in T cells have reduced capability of chronic virus control. To understand the molecular mechanism by which Nsd2 regulates Tfh differentiation, RNA-seq analysis of Nsd2 wildtype and knockout Tfh cells were performed.
Project description:We found that the incorporation of histone H3 variant H3.3 was impaired and the accumulation of ZMYND11, which specifically binds to H3.3K36me3, was decreased in NSD2 KO MEFs. About H3K36me2, the average gene body profiles of H3K36me2 showed preferential enrichment of H3K36me2 at the promoter and first half of the genic regions. We examined H3K36me2 mark in super enhancer regions using the ROSE super enhancer prediction program and identified of the 519 super enhancer islands of H3K36me2 in WT MEFs the H3K36me2 signals were decreased in NSD2 KO MEFs
Project description:NSD2 (also named MMSET and WHSC1) is a histone lysine methyltransferase that is implicated in diverse diseases and commonly overexpressed in multiple myeloma due to a recurrent t(4;14) chromosomal translocation. However, the precise catalytic activity of NSD2 is obscure, preventing progress in understanding how this enzyme influences chromatin biology and myeloma pathogenesis. Here we show that dimethylation of histone H3 at lysine 36 (H3K36me2) is the principal chromatin-regulatory activity of NSD2. Catalysis of H3K36me2 by NSD2 is sufficient for gene activation. In t(4;14)-positive myeloma cells, the normal genome-wide and gene-specific distribution of H3K36me2 is obliterated, creating a chromatin landscape that selects for a transcription profile favorable for myelomagenesis. Catalytically active NSD2 confers xenograft tumor formation and invasion capacity upon t(4;14)-negative cells and NSD2 promotes oncogenic transformation of primary cells in an H3K36me2-dependent manner. Together our findings establish H3K36me2 as the primary product generated by NSD2, and demonstrate that genomic disorganization of this canonical chromatin mark initiates oncogenic programming. ChIP sequencing of H3K36me2 ChIP DNA from KMS11 and TKO2 cells using Illumina Solexa Genome Analyzer II single end sequencing protocol. The experiment contains two biological replicates of H3K36me2 ChIP DNA and input materials from KMS11 and TKO2 cells.
Project description:NSD2 (also named MMSET and WHSC1) is a histone lysine methyltransferase that is implicated in diverse diseases and commonly overexpressed in multiple myeloma due to a recurrent t(4;14) chromosomal translocation. However, the precise catalytic activity of NSD2 is obscure, preventing progress in understanding how this enzyme influences chromatin biology and myeloma pathogenesis. Here we show that dimethylation of histone H3 at lysine 36 (H3K36me2) is the principal chromatin-regulatory activity of NSD2. Catalysis of H3K36me2 by NSD2 is sufficient for gene activation. In t(4;14)-positive myeloma cells, the normal genome-wide and gene-specific distribution of H3K36me2 is obliterated, creating a chromatin landscape that selects for a transcription profile favorable for myelomagenesis. Catalytically active NSD2 confers xenograft tumor formation and invasion capacity upon t(4;14)-negative cells and NSD2 promotes oncogenic transformation of primary cells in an H3K36me2-dependent manner. Together our findings establish H3K36me2 as the primary product generated by NSD2, and demonstrate that genomic disorganization of this canonical chromatin mark initiates oncogenic programming. Genome-wide expression profiling of KMS11 cells stably transduced with control vector in comparison to two independent shRNAs against NSD2. Each cell line is tested in duplicate.
Project description:NSD2 (also named MMSET and WHSC1) is a histone lysine methyltransferase that is implicated in diverse diseases and commonly overexpressed in multiple myeloma due to a recurrent t(4;14) chromosomal translocation. However, the precise catalytic activity of NSD2 is obscure, preventing progress in understanding how this enzyme influences chromatin biology and myeloma pathogenesis. Here we show that dimethylation of histone H3 at lysine 36 (H3K36me2) is the principal chromatin-regulatory activity of NSD2. Catalysis of H3K36me2 by NSD2 is sufficient for gene activation. In t(4;14)-positive myeloma cells, the normal genome-wide and gene-specific distribution of H3K36me2 is obliterated, creating a chromatin landscape that selects for a transcription profile favorable for myelomagenesis. Catalytically active NSD2 confers xenograft tumor formation and invasion capacity upon t(4;14)-negative cells and NSD2 promotes oncogenic transformation of primary cells in an H3K36me2-dependent manner. Together our findings establish H3K36me2 as the primary product generated by NSD2, and demonstrate that genomic disorganization of this canonical chromatin mark initiates oncogenic programming. Genome-wide expression profiling of p19ARF-/- mouse embryonic fibroblasts stably transduced with control vector or wild-type NSD2. Each cell line is tested in triplicate.
Project description:NSD2 (also named MMSET and WHSC1) is a histone lysine methyltransferase that is implicated in diverse diseases and commonly overexpressed in multiple myeloma due to a recurrent t(4;14) chromosomal translocation. However, the precise catalytic activity of NSD2 is obscure, preventing progress in understanding how this enzyme influences chromatin biology and myeloma pathogenesis. Here we show that dimethylation of histone H3 at lysine 36 (H3K36me2) is the principal chromatin-regulatory activity of NSD2. Catalysis of H3K36me2 by NSD2 is sufficient for gene activation. In t(4;14)-positive myeloma cells, the normal genome-wide and gene-specific distribution of H3K36me2 is obliterated, creating a chromatin landscape that selects for a transcription profile favorable for myelomagenesis. Catalytically active NSD2 confers xenograft tumor formation and invasion capacity upon t(4;14)-negative cells and NSD2 promotes oncogenic transformation of primary cells in an H3K36me2-dependent manner. Together our findings establish H3K36me2 as the primary product generated by NSD2, and demonstrate that genomic disorganization of this canonical chromatin mark initiates oncogenic programming. Genome-wide expression profiling of KMS11 and t(4;14) translocation knockout (TKO) cells. Each cell line is tested in triplicate.
Project description:Productive B cell responses are critical to protect a host from infection. The spleen and lymph nodes are populated by resting follicular B cells, which can enter germinal centers upon antigen encounter. Once in the germinal center, B cells migrate between the dark and light zones, where they undergo somatic hypermutation and selection, respectively. While germinal center B cells have been studied, an intense molecular understanding of these cells/subsets (and the differences between them) is lacking.
Project description:NSD2 is a histone methyltransferase that specifically dimethylates histone H3 lysine 36 (H3K36me2), a modification associated with gene activation. Dramatic overexpression of NSD2 in t(4;14) multiple myeloma (MM) and an activating mutation of NSD2 discovered in acute lymphoblastic leukemia (ALL) are significantly associated with altered gene activation, transcription and DNA damage repair. The partner proteins through which NSD2 may influence critical cellular processes remain poorly defined. In this study, we utilized proximity-based labelling (BioID) combined with label-free quantitative mass spectrometry to identify high confidence NSD2 interacting partners in MM cells.