Project description:The goal of this study was to assay the extent of variation in chromatin organization between 3 ant castes (major and minor female workers and males) in one colony of Camponotus floridanus carpenter ant using ChIPseq. 45 samples total: 30 ChIP samples and 3 inputs for total histone H3, 7 histone H3 PTMs and RNA Pol II in major, minor, and male ants; CBP in major and minor ants; the major H3K27ac sample was replicated. 4 ChIP samples for H3 and H3K27ac in brains of majors and minors, and 2 inputs. 2 RNAseq samples for major and minor ants head+thorax; 4 RNAseq samples for brain (majors and minors with 2 replicates each).
Project description:Study of the protein composition of the trophallactic fluid of the carpenter ant Camponotus floridanus. Samples were analyzed from ants with different functions (Nurse, Forager) coming from colonies with different ages (mature, young) either kept in lab or grown under natural conditions.
Project description:The biting behavior observed in Carpenter ants infected by the specialized fungus Ophiocordyceps unilateralis s.l. is an example of a complex host behavioral manipulation by parasite. Though parasitic manipulation of host behavior is generally assumed to be due to the parasite’s gene expression, few studies have set out to test this. We experimentally infected Carpenter ants to collect tissue from both parasite and host during the time period when manipulated biting behavior is experienced. Upon observation of synchronized biting, samples were collected and subjected to RNA-Seq analyses. We also sequenced and annotated the O. unilateralis s.l. genome as a reference for the fungal reads. Our mixed transcriptomics approach, together with a comparative genomics study, shows that the majority of the fungal genes that are up-regulated during manipulated biting behavior are unique to the O. unilateralis s.l. genome. This study furthermore reveals that the fungal parasite might be regulating immune- and neuronal stress responses in the host during manipulated biting, as well as impairing its chemosensory communication and causing apoptosis. Moreover, we found genes up-regulated during manipulation that putatively encode for proteins with reported effects on behavioral outputs, proteins involved in various neuropathologies, and proteins involved in the biosynthesis of secondary metabolites such as alkaloids.