Project description:The sequence of the genome of "Candidatus Tremblaya princeps" strain PCVAL, the primary endosymbiont of the citrus mealybug Planococcus citri, has been determined. "Ca. Tremblaya princeps" presents an unusual nested endosymbiosis and harbors a gammaproteobacterial symbiont within its cytoplasm in all analyzed mealybugs. The genome sequence reveals that "Ca. Tremblaya princeps" cannot be considered an independent organism but that the consortium with its gammaproteobacterial symbiotic associate represents a new composite living being.
Project description:Many insect species establish mutualistic symbiosis with intracellular bacteria that complement their unbalanced diets. The betaproteobacterium "Candidatus Tremblaya" maintains an ancient symbiosis with mealybugs (Hemiptera: Pseudococcidae), which are classified in subfamilies Phenacoccinae and Pseudococcinae. Most Phenacoccinae mealybugs have "Candidatus Tremblaya phenacola" as their unique endosymbiont, while most Pseudococcinae mealybugs show a nested symbiosis (a bacterial symbiont placed inside another one) where every "Candidatus Tremblaya princeps" cell harbors several cells of a gammaproteobacterium. Genomic characterization of the endosymbiotic consortium from Planococcus citri, composed by "Ca. Tremblaya princeps" and "Candidatus Moranella endobia," unveiled several atypical features of the former's genome, including the concerted evolution of paralogous loci. Its comparison with the genome of "Ca. Tremblaya phenacola" PAVE, single endosymbiont of Phenacoccus avenae, suggests that the atypical reductive evolution of "Ca. Tremblaya princeps" could be linked to the acquisition of "Ca. Moranella endobia," which possess an almost complete set of genes encoding proteins involved in homologous recombination. In order to test this hypothesis, we performed comparative genomics between "Ca. Tremblaya phenacola" and "Ca. Tremblaya princeps" and searched for the co-occurrence of concerted evolution and homologous recombination genes in endosymbiotic consortia from four unexplored mealybug species, Dysmicoccus boninsis, Planococcus ficus, Pseudococcus longispinus, and Pseudococcus viburni. Our results support a link between concerted evolution and nested endosymbiosis.
Project description:Many insects maintain intracellular mutualistic symbiosis with a wide range of bacteria which are considered essential for their survival (primary or P-endosymbiont) and typically suffer drastic genome degradation. Progressive loss of P-endosymbiont metabolic capabilities could lead to the recruitment of co-existent facultative endosymbiont (secondary or S-endosymbiont), thus adding more complexity to the symbiotic system. Planococcus citri, among other mealybug species, harbors an unconventional nested endosymbiotic system where every Tremblaya princeps cell (?-proteobacterium) harbors many Moranella endobia cells (?-proteobacterium). In this system, T. princeps possess one of the smallest prokaryote genome known so far. This extreme genome reduction suggests the supply of many metabolites and essential gene products by M. endobia. Although sporadic cell lysis is plausible, the bacterial participation on the regulation of the predicted molecular exchange (at least to some extent) cannot be excluded. Although the comprehensive analysis of the protein translocation ability of M. endobia PCVAL rules out the existence of specific mechanisms for the exportation of proteins from M. endobia to T. princeps, immunolocation of two M. endobia proteins points towards a non-massive but controlled protein provision. We propose a sporadic pattern for the predicted protein exportation events, which could be putatively controlled by the host and/or mediated by local osmotic stress.