Project description:A strict relationship exists between the Sirex noctilio and the Amylostereum areolatum, which is carried and spread by its partner. The growth and development of this symbiotic fungus is key to complete the life history of the Sirex woodwasp. Real-time quantitative polymerase chain reaction (RT-qPCR) is used to measure gene expression in samples of A. areolatum at different growth stages and explore the key genes and pathways involved in the growth and development of this symbiotic fungus. To obtain accurate RT-qPCR data, target genes need to be normalized by reference genes that are stably expressed under specific experimental conditions. In our study, the stability of 10 candidate reference genes in symbiotic fungal samples at different growth and development stages was evaluated using geNorm, NormFinder, BestKeeper, delta Ct methods, and RefFinder. Meanwhile, laccase1 was used to validate the stability of the selected reference gene. Under the experimental conditions of this study, p450, CYP, and γ-TUB were identified as suitable reference genes. This work is the first to systematically evaluate the reference genes for RT-qPCR results normalization during the growth of this symbiotic fungus, which lays a foundation for further gene expression experiments and understanding the symbiotic relationship and mechanism between S. noctilio and A. areolatum.
Project description:Amylostereum areolatum is the symbiotic fungus of the Eurasian woodwasp, Sirex noctilio, a globally invasive species. The mutualistic symbiont is associated with the woodwasp, assisting the damage process and providing nutrition for its insect partners. Colonization and growth of A. areolatum have essential impacts on the development and spread of S. noctilio, though the mechanism of interaction between the two has been poorly described. In this study, the first genome of this symbiotic fungus was sequenced, assembled, and annotated. The assembled A. areolatum genome was 57.5 Mb (54.51% GC content) with 15,611 protein-coding genes. We identified 580 carbohydrate-active enzymes (CAZymes), 661 genes associated with pathogen-host interactions, and 318 genes encoding transport proteins in total. The genome annotation revealed 10 terpene/phytoene synthases responsible for terpenoid biosynthesis, which could be classified into three clades. Terpene synthase gene clusters in clade II were conserved well across Russulales. In this cluster, genes encoding mevalonate kinase (MK), EGR12 (COG1557), and nonplant terpene cyclases (cd00687) were the known biosynthesis and regulatory genes. Genome sequence analysis of this fungus would prove the possibility of A. areolatum volatiles affecting the host selection of S. noctilio on a molecular basis. We further clarified that A. areolatum was a strict obligate symbiotic fungus. The wasps might protect the fungus before it was introduced into a suitable host substrate by oviposition, while the fungus would provide S. noctilio with a suitable environment and nutrients for the larval growth. These results would lay a foundation for our understanding of the mechanism of this entomogenous symbiosis.IMPORTANCESirex noctilio (F.), together with Amylostereum areolatum, a wood-decaying symbiotic fungus, causes severe damage to Pinus species worldwide. In China, it causes extensive death of Mongolian pine (Pinus sylvestris var. mongolica). There is an obligate dependency mutualism between the woodwasp and its fungus. Studies have suggested that the fungal growth rate affected the size of the wasps: larger adults emerged from sites with a higher fungus growth rate. This genome is the first reported genome sequence of a woodwasp symbiotic fungus. Genome sequence analysis of this fungus would prove the possibility of A. areolatum volatiles affecting the host selection of S. noctilio on a molecular basis. We further clarified that A. areolatum was a strict obligate symbiotic fungus and that it would provide S. noctilio with a suitable environment and with nutrients for the larval growth. These results would lay a foundation for our understanding of the mechanism of this entomogenous symbiosis.
Project description:Sirex noctilio along with its mutualistic fungal symbiont, Amylostereum areolatum (a white rot fungus), is an invasive pest that causes excessive damage to Pinus plantations in Northeast China. In 2015, S. noctilio were found to attack Pinus sylvestris var. mongolica, and often share larval habitat with the native woodwasp, S. nitobei. The objective of this study was to determine the possible origin(s) of the introduced pest complex in China and analyse the genetic diversity between A. areolatum isolated from invasive S. noctilio, native S. nitobei and other woodwasps collected from Europe (native range) and other countries. Phylogenetic analyses were performed using the intergenic spacer (IGS) dataset and the combined 4-locus dataset (the internal transcribed spacer region (ITS), translation elongation factor alpha 1 (tef1), DNA-directed ribosomal polymerase II (RPB2), and mitochondrial small subunit (mtSSU)) of three Amylostereum taxa. The multilocus genotyping of nuclear ribosomal regions and protein coding genes revealed at least three distinct multilocus genotypes (MLGs) of the fungus associated with invasive S. noctilio populations in Northeast China, which may have come from North America or Europe. The IGS region of A. areolatum carried by S. noctilio from China was designated type B1D2. Our results showed a lack of fidelity (the paradigm of obligate fidelity to a single fungus per wasp species) between woodwasp hosts and A. areolatum. We found that the native S. nitobei predominantly carried A. areolatum IGS-D2, but a low percentage of females instead carried A. areolatum IGS-B1D2 (MLG A13), which was presumably due to horizontal transmission from S. noctilio, during the sequential use of the same wood for larval development. The precise identification of the A. areolatum genotypes provides valuable insight into co-evolution between Siricidae and their symbionts, as well as understanding of the geographical origin and history of both Sirex species and their associated fungi.
Project description:An obligate mutualistic relationship exists between the fungus Amylostereum areolatum and woodwasp Sirex noctilio. The fungus digests lignin in the host pine, providing essential nutrients for the growing woodwasp larvae. However, the functional properties of this symbiosis are poorly described. In this study, we identified, cloned, and characterized 14 laccase genes from A. areolatum. These genes encoded proteins of 508 to 529 amino acids and contained three typical copper-oxidase domains, necessary to confer laccase activity. Besides, we performed molecular docking and dynamics simulation of the laccase proteins in complex with lignin compounds (monomers, dimers, trimers, and tetramers). AaLac2, AaLac3, AaLac6, AaLac8, and AaLac10 were found that had low binding energies with all lignin model compounds tested and three of them could maintain stability when binding to these compounds. Among these complexes, amino acid residues ALA, GLN, LEU, PHE, PRO, and SER were commonly present. Our study reveals the molecular basis of A. areolatum laccases interacting with lignin, which is essential for understanding how the fungus provides nutrients to S. noctilio. These findings might also provide guidance for the control of S. noctilio by informing the design of enzyme mutants that could reduce the efficiency of lignin degradation.
| S-EPMC7700495 | biostudies-literature
Project description:Transcriptome sequencing of Amylostereum areolatum at different growth stages on the medium of Pinus sylvestris powder