Project description:This study explored the transcriptomic response of couch grass rhizome meristhematic region exposed to mild, medium and severe drought. The couch grass stress response was compared with the response of two contrasting barley cultivars and the specificities and commonalities in transcriptomic stress response of both species were identified.
Project description:Adult male grass shrimp were exposed for 96 hours to LC50 concentrations of either Fipronil, Endosulfan, or Cadmium, as well as a Carrier Control exposure. RNA was extracted from whole-body homogenates using the RNABee kit. Tags were clustered to identify tags diagnostic of the different exposures. Keywords: SAGE, Grass shrimp, ecotoxicogenomics
Project description:The Gauging Response in Allergic Rhinitis to Sublingual and Subcutaneous Immunotherapy (GRASS) study was a randomized, double-blind, placebo-controlled trial of individuals with timothy grass allergy who received 2 years of placebo, subcutaneous (SCIT), or sublingual immunotherapy (SLIT) and were followed for a total of 3 years. Here we utilized longitudinal transcriptomic profiling of nasal brush and peripheral blood mononuclear cell (PBMC) samples after allergen provocation collected in the GRASS study to uncover airway and systemic expression pathways mediating responsiveness to immunotherapy.
Project description:The Gauging Response in Allergic Rhinitis to Sublingual and Subcutaneous Immunotherapy (GRASS) study was a randomized, double-blind, placebo-controlled trial of individuals with timothy grass allergy who received 2 years of placebo, subcutaneous (SCIT), or sublingual immunotherapy (SLIT) and were followed for a total of 3 years. Here we utilized longitudinal transcriptomic profiling of nasal brush and peripheral blood mononuclear cell (PBMC) samples after allergen provocation collected in the GRASS study to uncover airway and systemic expression pathways mediating responsiveness to immunotherapy.
Project description:Adult male grass shrimp were exposed for 96 hours to LC50 concentrations of either Fipronil, Endosulfan, or Cadmium, as well as a Carrier Control exposure. RNA was extracted from whole-body homogenates using the RNABee kit. Tags were clustered to identify tags diagnostic of the different exposures. Keywords: SAGE, Grass shrimp, ecotoxicogenomics 3 randomly selected shrimp were pooled for each library. Libraries were constructed using the I-SAGE long kit from Invitrogen.
Project description:Beef represents a major diet component and one of the major sources of protein in human. The beef industry in the United States is currently undergoing changes and is facing increased demands especially for natural grass-fed beef. The grass-fed beef obtained their nutrients directly from pastures, which contained limited assimilable energy but abundant amount of fiber. On the contrary, the grain-fed steers received a grain-based regime that served as an efficient source of high-digestible energy. Lately, ruminant animals have been accused to be a substantial contributor for the green house effect. Therefore, the concerns from environmentalism, animal welfare and public health have driven consumers to choose grass-fed beef. Rumen is one of the key workshops to digest forage constituting a critical step to supply enough nutrients for animals’ growth and production. We hypothesize that rumen may function differently in grass- and grain-fed regimes. The objective of this study was to find the differentially expressed genes in the ruminal wall of grass-fed and grain-fed steers, and then explore the potential biopathways. In this study, the RNA Sequencing (RNA-Seq) method was used to measure the gene expression level in the ruminal wall. The total number of reads per sample ranged from 24,697,373 to 36,714,704. The analysis detected 342 differentially expressed genes between ruminal wall samples of animals raised under different regimens. The Fisher’s exact test performed in the Ingenuity Pathway Analysis (IPA) software found 16 significant molecular networks. Additionally, 13 significantly enriched pathways were identified, most of which were related to cell development and biosynthesis. Our analysis demonstrated that most of the pathways enriched with the differentially expressed genes were related to cell development and biosynthesis. Our results provided valuable insights into the molecular mechanisms resulting in the phenotype difference between grass-fed and grain-fed cattle.
Project description:Beef represents a major diet component and one of the major sources of protein in human. The beef industry in the United States is currently undergoing changes and is facing increased demands especially for natural grass-fed beef. The grass-fed beef obtained their nutrients directly from pastures, which contained limited assimilable energy but abundant amount of fiber. On the contrary, the grain-fed steers received a grain-based regime that served as an efficient source of high-digestible energy. Lately, ruminant animals have been accused to be a substantial contributor for the green house effect. Therefore, the concerns from environmentalism, animal welfare and public health have driven consumers to choose grass-fed beef. Rumen is one of the key workshops to digest forage constituting a critical step to supply enough nutrients for animals’ growth and production. We hypothesize that rumen may function differently in grass- and grain-fed regimes. The objective of this study was to find the differentially expressed genes in the ruminal wall of grass-fed and grain-fed steers, and then explore the potential biopathways. In this study, the RNA Sequencing (RNA-Seq) method was used to measure the gene expression level in the ruminal wall. The total number of reads per sample ranged from 24,697,373 to 36,714,704. The analysis detected 342 differentially expressed genes between ruminal wall samples of animals raised under different regimens. The Fisher’s exact test performed in the Ingenuity Pathway Analysis (IPA) software found 16 significant molecular networks. Additionally, 13 significantly enriched pathways were identified, most of which were related to cell development and biosynthesis. Our analysis demonstrated that most of the pathways enriched with the differentially expressed genes were related to cell development and biosynthesis. Our results provided valuable insights into the molecular mechanisms resulting in the phenotype difference between grass-fed and grain-fed cattle. Ruminal wall samples from two randomly chosen animals per group were obtained, totaling four samples. The animals were born, raised and maintained at the Wye Angus farm. This herd, which has been closed for almost 75 years and yielded genetically similar progenies, constitutes an excellent resource to perform transcriptomic analysis. The genetic resemblance among individuals permits us to better control the cause of variation between experimental clusters and individuals. The randomly chosen pairs of animals were part of larger sets of steers that received a particular treatment. All animals received the same diet until weaning. The grain group received conventional diet consisting of corn silage, shelled corn, soy bean and trace minerals. The grass fed steers consumed normally grazed alfalfa; during wintertime, bailage was utilized. The alfalfa has been harvested from land without any fertilizers, pesticides or other chemicals. The steers ate no animal, agricultural or industrial byproducts and never receive any type of grain. Then, the calves were randomly assigned to one diet and exclusively received that regimen until termination. Grain–fed animals reached the market weight around the age of 14 month-old, however, grass-fed steers required approximately 200 additional days to achieve the same weight. Immediately after termination at the Old Line Custom Meat Company (Baltimore, MD) a small piece of ruminal wall was excised, cleaned and preserved at -80°C for posterior processing.
Project description:The grass-fed cattle obtain nutrients directly from pastures containing limited assimilable energy but abundant amount of fiber; by contrast, grain-fed steers receive a diet that is comprised mainly of grains and serves as an efficient source of high-digestible energy. Besides energy, these two types of diet differ in a large number of nutritional components. Additionally, animals maintained on rich-energy regimen are more likely to develop metabolic disorders and infectious diseases than pasture raised individuals. Thus, we hypothesize that spleenâ??the main immune organâ??may function differently under disparate regimes. The objective of this study was to find the differentially expressed genes in the spleen of grass-fed and grain-fed steers, and furtherly explore the potential involved biopathways. Through RNA sequencing (RNA-Seq), we detected 123 differentially expressed genes. Based on these genes, we performed an Ingenuity Pathway Analysis (IPA) and identified 9 significant molecular networks and 13 enriched biological pathways. Two of the pathways, Nur77 signaling in T lymphocytes and calcium-induced T lymphocyte apoptosis which are immune related, contain a pair of genes HLA-DRA and NR4A1 with dramatically altered expression level. Collectively, our results provided valuable insights into understanding the molecular mechanism of spleen under varied feeding regimens. We collected spleen samples from two randomly chosen animals per group, totaling four samples. The animals were born and raised at the Wye Angus farm, which has produced genetically similar progenies. The genetic resemblance among individuals permitted us to better control the variation between experimental individuals, constituting an excellent resource to perform scientific research. All animals included in this study received the same diet until weaning. Next, we assigned the animals to one certain diet at random, and exclusively raised them under that regimen until termination. The diet of grain-fed group consisted of soybean, shelled corn, corn silage and trace minerals. The grass-fed steers normally received alfalfa harvested from land without any fertilizers, pesticides or other chemicals; during wintertime, bailage was supplied. Grass-fed individuals ate no animal, agricultural or industrial byproducts and never consumed any type of grain. Grain-fed animals reached the market weight around 14 month-old; however, grass-fed steers needed approximately 200 additional days to achieve the same weight. Immediately after termination at the Old Line Custom Meat Company (Baltimore, MD), a small piece of spleen was incised, washed and frozen at -80°C for posterior processing.
Project description:The postharvest dehydration of grape berries allows theaccumulation of sugars and other solutesand promotes the synthesis of aroma compounds unique to high-quality raisin wines such as thepassito wines made in Italy. These dynamic changes are dependent on environmental parameters such as temperature and relative humidity,as well asendogenous factors such as berry morphology and genotype, but the contribution of each variable isnot well understood.Here wecompared berries subjected to natural or accelerated dehydration, the latterdriven by forced airflow.We followed the evolution of transcript andmetaboliteprofiles and found that accelerated dehydration clearly dampened the natural transcriptomic and metabolomic programs of postharvest berries. We found that slow dehydration over a prolonged duration isnecessary to inducegene expression and metabolite accumulation associated with the final quality traits of dehydrated berries. The accumulation of key metabolites (particularly stilbenoids)during postharvest dehydration isinhibited by rapid dehydration conditions that shorten the berry life time.