Project description:Mammalian feces can be collected non-invasively during field research and provides valuable information on the ecology and evolution of the host individuals. Undigested food objects, genome/metagenome, steroid hormones, and stable isotopes obtained from fecal samples provide evidence on diet, host/symbiont genetics, and physiological status of the individuals. However, proteins in mammalian feces have hardly been studied, which hampers the molecular investigations into the behavior and physiology of the host individuals. Here, we apply mass spectrometry-based proteomics to fecal samples (n = 10) that were collected from infant, juvenile, and adult captive Japanese macaques (Macaca fuscata) to describe the proteomes of the host, food, and intestinal microbes. The results show that fecal proteomics is a useful method to investigate dietary changes along with breastfeeding and weaning, to reveal the organ/tissue and taxonomy of dietary items, and to estimate physiological status inside intestinal tracts. These types of insights are difficult or impossible to obtain through other molecular approaches. Most mammalian species are facing extinction risk and there is an urgent need to obtain knowledge on their ecology and evolution for better conservation strategy. The fecal proteomics framework we present here is easily applicable to wild settings and other mammalian species, and provides direct evidence of their behavior and physiology.
2021-03-18 | PXD021098 | Pride
Project description:Long read infant/young children fecal and environmental samples
Project description:Complex oligosaccharides found in human milk play a vital role in gut microbiome development for the human infant. Bovine milk oligosaccharides (BMO) have similar structures with those derived from human milk, but have not been well studied for their effects on the healthy adult human gut microbiome. Healthy human subjects consumed BMO over two-week periods at two different doses and provided fecal samples. Metatranscriptomics of fecal samples was conducted to determine microbial and host gene expression in response to the supplement. Fecal samples were also analyzed by mass spectrometry to determine levels of undigested BMO. No changes were observed in microbiome activity across all participants. Repeated sampling enabled subject-specific analyses: four of six participants had minor, yet statistically significant, changes in microbial activity. No significant change was observed in the gene expression of host cells in stool. Levels of BMO excreted in feces after supplementation were not significantly different from placebo and were not correlated with dosage or expressed microbial enzyme levels. Collectively, these data suggest that BMO is fully digested in the human gastrointestinal tract prior to stool collection. Participants’ gut microbiomes remained stable but varied between individuals. Additionally, the unaltered host transcriptome provides further evidence for the safety of BMO as a dietary supplement or food ingredient.
Project description:Microbial colonization of the human gastrointestinal tract plays an important role in establishing health and homeostasis. However, the time-dependent and related functional signatures of microbial and human proteins during early colonization of the gut have yet to be determined. Thus, we employed shotgun proteomics via nano-2D-LC-MS/MS to simultaneously monitor microbial and human proteins in fecal samples from a healthy preterm infant during early development. ). All MS/MS spectra were searched against a predicted protein database containing 25 microbial species along with the Human RefSeq2011 genome using the SEQUEST algorithm (Eng et al, 1994), and filtered with DTASelect version 1.9 (Tabb et al, 2002) at the peptide level with standard filters [SEQUEST Xcorrs of at least 1.8 (+1), 2.5 (+2) 3.5 (+3)] organizing identified peptides to their corresponding protein sequences. This study provides the first elucidation of coordinated human and microbial proteins in the infant gut during early development.
Project description:G. lamblia is a fecal-oral transmitted human enteropathogenic protozoan with extremely high incidence in endemic areas in Africa and Asia particularly in the infant population. It homes to the proximal small intestine and induced diarrhea and malabsoption. Here we established a novel murine G. lamblia infection model and analyzed the tissue response and downstream microbial and metabolic effects in the host.
Project description:G. lamblia is a fecal-oral transmitted human enteropathogenic protozoan with extremely high incidence in endemic areas in Africa and Asia particularly in the infant population. It homes to the proximal small intestine and induced diarrhea and malabsoption. Here we established a novel murine G. lamblia infection model and analyzed the tissue response and downstream microbial and metabolic effects in the host.
Project description:G. lamblia is a fecal-oral transmitted human enteropathogenic protozoan with extremely high incidence in endemic areas in Africa and Asia particularly in the infant population. It homes to the proximal small intestine and induced diarrhea and malabsoption. Here we established a novel murine G. lamblia infection model and analyzed the tissue response and downstream microbial and metabolic effects in the host.