Project description:Chronic myelomonocytic leukemia (CMML) is an incurable hematopoietic stem cell malignancy. We identified a novel NUP98-HBO1 fusion from a patient with CMML. HBO1, a histone acetyltransferase (HAT) which belongs to the MYST family, is the first NUP98 fusion partner encodes HAT. To determine the effect of the NUP98-HBO1 fusion on downstream target gene regulation, we performed gene expression array analysis of NUP98-HBO1-transduced human cord blood (CB) CD34+ cells.
Project description:NUP98 fusion oncoproteins (FOs) are a hallmark of childhood acute myeloid leukemia (AML) and drive leukemogenesis through liquid-liquid phase separation-mediated nuclear condensate formation. However, the composition and consequences of NUP98 FO-associated condensates are incompletely understood. Here we show that MYST family histone acetyltransferase (HAT) complex proteins including MOZ/KAT6A, HBO1/KAT7, and the common MOZ/HBO1 complex subunit BRPF1 associate with NUP98 FOs on chromatin and within condensates. MYST HATs are molecular dependencies in NUP98-rearranged (NUP98-r) leukemia, and genetic inactivation or pharmacologic inhibition of Moz and Hbo1 impairs NUP98-r cell fitness. MOZ/HBO1 inhibition decreased global H3K23ac levels, displaced NUP98::HOXA9 from chromatin at the Meis1 locus, and led to myeloid cell differentiation. Additionally, MOZ/HBO1 inhibition decreased leukemic burden in multiple NUP98-r leukemia xenograft mouse models, synergized with Menin inhibitor treatment, and was efficacious in Menin inhibitor-resistant cells. In summary, we show that MYST family HATs are therapeutically actionable dependencies in NUP98-r AML.
Project description:NUP98 fusion oncoproteins (FOs) are a hallmark of childhood acute myeloid leukemia (AML) and drive leukemogenesis through liquid-liquid phase separation-mediated nuclear condensate formation. However, the composition and consequences of NUP98 FO-associated condensates are incompletely understood. Here we show that MYST family histone acetyltransferase (HAT) complex proteins including MOZ/KAT6A, HBO1/KAT7, and the common MOZ/HBO1 complex subunit BRPF1 associate with NUP98 FOs on chromatin and within condensates. MYST HATs are molecular dependencies in NUP98-rearranged (NUP98-r) leukemia, and genetic inactivation or pharmacologic inhibition of Moz and Hbo1 impairs NUP98-r cell fitness. MOZ/HBO1 inhibition decreased global H3K23ac levels, displaced NUP98::HOXA9 from chromatin at the Meis1 locus, and led to myeloid cell differentiation. Additionally, MOZ/HBO1 inhibition decreased leukemic burden in multiple NUP98-r leukemia xenograft mouse models, synergized with Menin inhibitor treatment, and was efficacious in Menin inhibitor-resistant cells. In summary, we show that MYST family HATs are therapeutically actionable dependencies in NUP98-r AML.
Project description:Although it has been shown that HIF1 and 2 fulfill essential roles within the hematopoietic system and in the regulation of HSC fate, little is currently known about the specific mechanisms that are involved. We identified transcriptome changes induced by hypoxia, constitutively active HIF1(P402/564) and HIF2(P405/531) in human cord blood CD34+ cells. Thus, we were able to identify common hypoxia-HIF1-HIF2 gene signatures, but we also identified specific target genes that were exclusively regulated by HIF1, HIF2 or hypoxia. CB CD34+ cells were isolated by Miltenyi miniMACS column. Cells were prestimulated in HPGM with 100 ng/ml KITL, FLT3L and TPO for 3 days after which cells were placed either at normoxia or hypoxia (1% O2 for an additional 24 hrs). 5 independent CB CD34+ batches were used and isolated RNA was combined and used for Illumina beadhchip arrays HT12 v4
Project description:Although it has been shown that HIF1 and 2 fulfill essential roles within the hematopoietic system and in the regulation of HSC fate, little is currently known about the specific mechanisms that are involved. We identified transcriptome changes induced by hypoxia, constitutively active HIF1(P402/564) and HIF2(P405/531) in human cord blood CD34+ cells. Thus, we were able to identify common hypoxia-HIF1-HIF2 gene signatures, but we also identified specific target genes that were exclusively regulated by HIF1, HIF2 or hypoxia. CB CD34+ cells were isolated by Miltenyi miniMACS column. Cells were prestimulated in HPGM with 100 ng/ml KITL, FLT3L and TPO for 48 hrs. Cells were transduced with control pRRL-IRS2-EGFP lentiviral vectors or vectors expressing HIF1α(P402A,P564A) or HIF2α(P405A,P531A) in one or two rounds of 12 hrs each. 24 hrs later transduced cells were sorted after which RNA was isolated. 5 independent CB CD34+ batches were isolated, transduced and sorted, and isolated RNA was combined and used for Illumina beadhchip arrays HT12 v4
Project description:NUP98 fusion oncoproteins (FOs) are a hallmark of childhood acute myeloid leukemia (AML), and drive leukemogenesis through liquid-liquid phase separation-mediated nuclear condensate formation. However, the composition and consequences of NUP98 FO-associated condensates are incompletely understood. Here we show that histone acetyltransferase (HAT) complex proteins including MOZ associate with NUP98 FOs, and that BRPF1, an epigenetic writer that associates with MOZ is a molecular dependency in NUP98::KDM5A AML. Inactivation of Brpf1 as well as HAT complex member Moz, Hbo1, Brd1 or Meaf6 in Nup98::Kdm5a;Vav-Cre cells impaired fitness of NUP98-rearranged cells. MOZ inhibition decreased global H3K23ac levels, displaced FO from chromatin at the Meis1 locus, and led to myeloid cell differentiation. Additionally, MOZ inhibition decreased leukemic burden in multiple NUP98-rearranged leukemia xenograft models, synergized with Menin inhibitor treatment, and was efficacious in Menin inhibitor-resistant cells. In summary, we show that MOZ is a potentially targetable dependency in NUP98-rearranged AMLs. SIGNIFICANCE STATEMENT MOZ is a member of NUP98 FO condensates with key roles in leukemia phenotypes. MOZ inhibition is effective in multiple preclinical models, including those non-responsive to Menin inhibition. MOZ and Menin inhibition are synergistic in some NUP98-rearranged models, supporting clinical translation to improve outcomes of NUP98 FO-driven leukemias.
Project description:RNASeq data for mPB or CB-derived CD34+ exposed to UM171 human mobilized peripheral blood or cord blood-derived CD34(+) cells were cultured for 16 hours with vehicle (DMSO), dose response of UM171 [11.9nM, 19nM, 30.5nM, 48.8nM, 78.1nM and 125nM], SR1 [500nM] and combination of( UM171 [48.8nM]+SR1 [500nM])
Project description:NUP98 fusion oncoproteins (FOs) are a hallmark of childhood acute myeloid leukemia (AML), and drive leukemogenesis through liquid-liquid phase separation-mediated nuclear condensate formation. However, the composition and consequences of NUP98 FO-associated condensates are incompletely understood. Here we show that histone acetyltransferase (HAT) complex proteins including MOZ associate with NUP98 FOs, and that BRPF1, an epigenetic writer that associates with MOZ, is a molecular dependency in NUP98::KDM5A AML. Inactivation of Brpf1 as well as HAT complex member Moz, Hbo1, Brd1 or Meaf6 in Nup98::Kdm5a;Vav-Cre cells impaired fitness of NUP98-rearranged cells. MOZ acetyltransferase inhibition decreased global H3K23ac levels, displaced FO from chromatin at the Meis1 locus, and led to myeloid cell differentiation. Additionally, MOZ inhibition decreased leukemic burden in multiple NUP98-rearranged leukemia xenograft mouse models, synergized with Menin inhibitor treatment, and was efficacious in Menin inhibitor-resistant cells. In summary, we show that MOZ is a potentially targetable dependency in NUP98-rearranged AMLs.
Project description:Single cell RNA-seq analysis was performed on sorted population of CD45+/CD34+ HSPCs from cord blood (CB) and mobilized peripheral blood (mPB) donors, after co-culture with vascular niche cells, to uncover differential transcriptional output between HSPC derived from CB and mPB origins.