Project description:We analyzed differential gene expression in wt and a snf2 mutant (W8) cells; the pucherimin biosynthesis genes were among the top diff. regulated genes (reduced expression in the mutant). ABSTRACT: Metschnikowia pulcherrima synthesizes the pigment pulcherrimin, from cyclodileucine (cyclo(Leu-Leu)) as a precursor, and exhibits strong antifungal activity against notorious plant pathogenic fungi. This yeast therefore has great potential for biocontrol applications against fungal diseases; particularly in the phyllosphere where this species is frequently found. To elucidate the molecular basis of the antifungal activity of M. pulcherrima, we compared a wildtype strain with a spontaneously occurring, pigmentless, weakly antagonistic mutant derivative. Whole genome sequencing of the wildtype and mutant strains identified a point mutation that creates a premature stop codon in the transcriptional regulator SNF2 in the mutant strain. Complementation of the mutant strain with the wildtype SNF2 gene restored pigmentation and recovered the strong antifungal activity. Mass spectrometry (UPLC HR HESI-MS) proved the presence of the pulcherrimin precursors cyclo(Leu-Leu) and pulcherriminic acid and identified new precursor and degradation products of pulcherriminic acid and/or pulcherrimin. All of these compounds were identified in the wildtype and complemented strain, but were undetectable in the pigmentless snf2 mutant strain. These results thus identify Snf2 as a regulator of antifungal activity and pulcherriminic acid biosynthesis in M. pulcherrima and provide a starting point for deciphering the molecular functions underlying the antagonistic activity of this yeast.