Project description:To identify the regulatory targets of the R2R3-Myb transcription factor, LjMyb14, the gene was constitutively over-expressed in Lotus japonicus under the Lotus ubiquitin promoter. The gene expression levels of three biological replicates of the Lotus japonicus (MG20) were averaged and compared to the the gene expression levels of three independent lines of Lotus japonicus japonicus constituitively over expressing LjMyb14 using the Lotus ubiquitin promoter.
Project description:Study of the secretome of Cellvibrio japonicus after growth on different chitins. Utilization of a novel plate method to enrich truly secreted proteins.
Project description:Lotus japonicus is a model legume broadly used to study transcriptome regulation under different stress conditions and microorganism interaction. Understanding how this model plant respond gainst alkaline stress will certainly help to develop more tolerant cultivars in economically important Lotus species as well as in other legumes. In order to uncover the most important response mechanisms activated during alkaline stress, we explored by microarray analysis the transcriptome regulation occurring in the phenotypically contrasting ecotypes MG-20 and Gifu B-129 of L. japonicus after 21 days of alkaline stress.
Project description:Small interfering RNAs (siRNAs) are known to be involved in both transposon silencing and centromere function, leading us to investigate the interplay between these two roles in the Schizosaccharomyces lineage. In S. pombe, the centromeric repeats produce dicer-dependent siRNAs that are required for maintenance of centromeric structure, function and transcriptional silencing via Argonaute-dependent heterochromatin formation13. However, transposons are silenced in S. pombe by RNAi-independent mechanisms and do not produce abundant siRNAs. To investigate whether centromere-directed siRNA production is conserved within the transposon-rich centromeres of S. japonicus, we isolated and sequenced small RNAs from log-phase S. japonicus cultures. The small RNAs have a modal size of 23 nucleotides and 94% map to transposons, both telomeric and centromeric.
Project description:We used massively parallel sequencing to discover and characterize small RNAs (sRNAs) from fission yeast Schizosaccharomyces japonicus. We found that, unlike in related S. pombe, a substantial fraction of sRNAs maps to transposons, both telomeric and centromeric.
Project description:Small interfering RNAs (siRNAs) are known to be involved in both transposon silencing and centromere function, leading us to investigate the interplay between these two roles in the Schizosaccharomyces lineage. In S. pombe, the centromeric repeats produce dicer-dependent siRNAs that are required for maintenance of centromeric structure, function and transcriptional silencing via Argonaute-dependent heterochromatin formation13. However, transposons are silenced in S. pombe by RNAi-independent mechanisms and do not produce abundant siRNAs. To investigate whether centromere-directed siRNA production is conserved within the transposon-rich centromeres of S. japonicus, we isolated and sequenced small RNAs from log-phase S. japonicus cultures. The small RNAs have a modal size of 23 nucleotides and 94% map to transposons, both telomeric and centromeric. Isolation and computational analysis of small RNAs from wild-type S. japonicus
Project description:We used massively parallel sequencing to discover and characterize small RNAs (sRNAs) from fission yeast Schizosaccharomyces japonicus. We found that, unlike in related S. pombe, a substantial fraction of sRNAs maps to transposons, both telomeric and centromeric. small RNA library from total RNA isolations from Schizosaccharomyces japonicus
Project description:Lotus japonicus is a model legume broadly used to study transcriptome regulation under different stress conditions and microorganism interaction. Understanding how this model plant protects itself against pathogens will certainly help to develop more tolerant cultivars in economically important Lotus species as well as in other legumes. In order to uncover the most important defense mechanisms activated upon bacterial attack, we explored by microarray analysis the transcriptome regulation occurring in the phenotypically contrasting ecotypes MG-20 and Gifu B-129 of L. japonicus after inoculation with the non-pathogenic strain Pseudomonas syringae DC3000 pv. tomato.