Project description:Methods for differentiating human pluripotent stem cells to pancreatic and liver lineages in vitro have been limited by the inability to identify and isolate distinct endodermal subpopulations specific to these two organs. Here we report that pancreatic and hepatic progenitors can be isolated using the surface markers CD177/NB1 glycoprotein and inducible T-cell costimulatory ligand CD275/ICOSL, respectively, from seemingly homogeneous definitive endoderm derived from human pluripotent stem cells. Anterior definitive endoderm (ADE) subpopulations identified by CD177 and CD275 show inverse activation of canonical and noncanonical WNT signaling. CD177+ ADE expresses and synthesizes the secreted WNT, NODAL and BMP antagonist CERBERUS1 and is specified toward the pancreatic fate. CD275+ ADE receives canonical Wnt signaling and is specified toward the liver fate. Isolated CD177+ ADE differentiates more homogeneously into pancreatic progenitors and into more functionally mature and glucose-responsive β-like cells in vitro compared with cells from unsorted differentiation cultures.
Project description:Precisely co-ordinated activation of lineage specific transcription factors direct cell fate decisions during mouse early development. The T-box transcription factor Eomes is dynamically expressed during mouse gastrulation and is a key regulator of the anterior visceral endoderm (AVE), cardiac mesoderm and definitive endoderm (DE) lineages. The cis-acting regulatory elements that direct spatiotemporally restricted Eomes expression domains have yet to be elucidated. To understand transcriptional regulation of Eomes in Definitive Endoderm open chromatin data was generated by ATAC-seq and histone modifications identified by ChIP-seq. Interactions at the Eomes locus and the loci of two related transcription factors Foxa2 and Lhx1, was also determined by NG Capture-C.
Project description:Precisely co-ordinated activation of lineage specific transcription factors direct cell fate decisions during mouse early development. The T-box transcription factor Eomes is dynamically expressed during mouse gastrulation and is a key regulator of the anterior visceral endoderm (AVE), cardiac mesoderm and definitive endoderm (DE) lineages. The cis-acting regulatory elements that direct spatiotemporally restricted Eomes expression domains have yet to be elucidated. To understand transcriptional regulation of Eomes in Definitive Endoderm open chromatin data was generated by ATAC-seq and histone modifications identified by ChIP-seq. Interactions at the Eomes locus and the loci of two related transcription factors Foxa2 and Lhx1, was also determined by NG Capture-C.
Project description:Precisely co-ordinated activation of lineage specific transcription factors direct cell fate decisions during mouse early development. The T-box transcription factor Eomes is dynamically expressed during mouse gastrulation and is a key regulator of the anterior visceral endoderm (AVE), cardiac mesoderm and definitive endoderm (DE) lineages. The cis-acting regulatory elements that direct spatiotemporally restricted Eomes expression domains have yet to be elucidated. To understand transcriptional regulation of Eomes in Definitive Endoderm open chromatin data was generated by ATAC-seq and histone modifications identified by ChIP-seq. Interactions at the Eomes locus and the loci of two related transcription factors Foxa2 and Lhx1, was also determined by NG Capture-C.
Project description:Optimizing the efficiency of definitive endoderm differentiation is significant for the generation of diverse organ-like structures. In this study, we utilized saracatinib to enhance definitive endoderm differentiation in pluripotent stem cells. We found saracatinib significantly improved the definitive endoderm differentiation at low concentrations. To investigate the impact of 0.5 μM saracatinib on definitive endoderm differentiation of ESC H1 cells, we conducted RNA-seq analysis with differentiated cells with or without 0.5 μM saracatinib treatment.
Project description:This SuperSeries is composed of the following subset Series: GSE16678: MicroRNA expression data from differentiation of human Cyt49 ESCs into definitive endoderm in feeder-free conditions GSE16681: mRNA expression data from differentiation of human ESCs into definitive endoderm, Cyt49 on matrigel GSE16687: MicroRNA expression data from differentiation of human Cyt49 ESCs into definitive endoderm on MEF feeder layers GSE16689: MicroRNA expression data from differentiation of human H9 ESCs into definitive endoderm on MEF feeder layers Refer to individual Series
Project description:Mouse embryonic stem cells containing a Sox17-GFP construct were differentiated using growth factors (Activin A and Wnt3A) to definitive endoderm. Sox17-GFP(+) cells were sorted using fluorescence activated cell sorting and either used for total RNA harvest OR continued in culture in the presence of primary pancreatic mesenchymal cell lines. At the end of 6 serial passages on mesenchyme, the Sox17-GFP(+) cells were again sorted and the RNA was harvested for arrays. Samples were prepared as described in summary, with technical duplicates for each of the following 3 categories: 1. Unpassaged (P0) endoderm, 2. Endoderm passaged 6 times (P6) on mesenchyme 1, and 3. Endoderm passaged 6 times (P6) on mesenchyme 2.
Project description:The anterior-posterior axis of the mammalian embryo is laid down by the anterior visceral endoderm (AVE), an extraembryonic signaling center that is specified within the visceral endoderm. Current models posit that AVE differentiation is promoted globally by epiblast-derived Nodal signals, and spatially restricted by a BMP gradient established by the extraembryonic ectoderm. Here, we report spatially restricted AVE differentiation in bilayered embryo-like aggregates made from mouse embryonic stem cells that lack an extraembryonic ectoderm. Notably, clusters of AVE cells also form in pure visceral endoderm cultures upon activation of Nodal signaling, indicating that tissue-intrinsic factors can restrict AVE differentiation. We identify β-catenin activity as a tissue-intrinsic factor that antagonizes AVE-inducing Nodal signals. Together, our results show how an AVE-like population can arise through interactions between epiblast and visceral endoderm alone. This mechanism may be a flexible solution for axis patterning in a wide range of embryo geometries, and provide robustness to axis patterning when coupled with signal gradients.
Project description:hESCs can differentiate into the three primary embryonic lineages (endoderm, mesoderm, ectoderm) as well as extraembryonic tissues. Definitive endoderm (DE) is the first step into the pathway to endoderm derived tissues: pancreas, liver, gut, lung. We used microarrays to detail the changes in mRNA expression during the transition from pluripotent hESCs into definitive endoderm.