Project description:Members of the bacterial phylum Spirochaetes are primarily studied for their commensal and pathogenic roles in animal hosts. However, Spirochaetes are also frequently detected in anoxic hydrocarbon-contaminated environments but their ecological role in such ecosystems has so far remained unclear. Here we provide a functional trait to these frequently detected organisms with an example of a sulfate-reducing, naphthalene-degrading enrichment culture consisting of a sulfate-reducing deltaproteobacterium Desulfobacterium naphthalenivorans and a novel spirochete Rectinema cohabitans. Using a combination of genomic, proteomic, and physiological studies we show that R. cohabitans grows by fermentation of organic compounds derived from biomass from dead cells (necromass). It recycles the derived electrons in the form of H2 to the sulfate-reducing D. naphthalenivorans, thereby supporting naphthalene degradation and forming a simple microbial loop. We provide metagenomic evidence that equivalent associations between Spirochaetes and hydrocarbon-degrading microorganisms are of general importance in hydrocarbon- and organohalide-contaminated ecosystems. We propose that environmental Spirochaetes form a critical component of a microbial loop central to nutrient cycling in subsurface environments. This emphasizes the importance of necromass and H2-cycling in highly toxic contaminated subsurface habitats such as hydrocarbon-polluted aquifers.
Project description:High Arctic soils have low nutrient availability, low moisture content and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at Alert (ex situ approach) and Eureka (in situ approach), in the Canadian high Arctic. Bacterial community structure and function were assessed using microarrays targeting the 16S rRNA genes of bacteria found in cold environments and hydrocarbon degradation genes as well as reverse-transcriptase real-time PCR targeting key functional genes. Results indicated a large difference between sampling sites in terms of both soil microbiology and decontamination rates. A rapid reorganization of the bacterial community structure and functional potential as well as rapid increases in the expression of alkane monooxygenases and polyaromatic hydrocarbon ring-hydroxylating-dioxygenases were observed one month after the bioremediation treatment commenced in the Alert soils. In contrast, no clear changes in community structure were observed in Eureka soils, while key gene expression increased after a relatively long lag period (1 year). Such discrepancies are likely caused by differences in bioremediation treatments (i.e. ex situ vs. in situ), weathering of the hydrocarbons, indigenous microbial communities, and environmental factors such as soil humidity and temperature. In addition, this study demonstrates the value of molecular tools for the monitoring of polar bacteria and their associated functions during bioremediation. 38 soil samples from two high arctic locations that were contaminated-treated, contaminated or not contaminated followed for up to 4 years
Project description:High Arctic soils have low nutrient availability, low moisture content and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at Alert (ex situ approach) and Eureka (in situ approach), in the Canadian high Arctic. Bacterial community structure and function were assessed using microarrays targeting the 16S rRNA genes of bacteria found in cold environments and hydrocarbon degradation genes as well as reverse-transcriptase real-time PCR targeting key functional genes. Results indicated a large difference between sampling sites in terms of both soil microbiology and decontamination rates. A rapid reorganization of the bacterial community structure and functional potential as well as rapid increases in the expression of alkane monooxygenases and polyaromatic hydrocarbon ring-hydroxylating-dioxygenases were observed one month after the bioremediation treatment commenced in the Alert soils. In contrast, no clear changes in community structure were observed in Eureka soils, while key gene expression increased after a relatively long lag period (1 year). Such discrepancies are likely caused by differences in bioremediation treatments (i.e. ex situ vs. in situ), weathering of the hydrocarbons, indigenous microbial communities, and environmental factors such as soil humidity and temperature. In addition, this study demonstrates the value of molecular tools for the monitoring of polar bacteria and their associated functions during bioremediation. 38 soil samples from two high arctic locations that were contaminated-treated, contaminated or not contaminated followed for up to 4 years
Project description:We demonstrate the feasibility of total RNA-SIP in experiments where microbes from a hydrocarbon-contaminated aquifer were studied in microcosms with 13C-labelled-toluene to understand their adaptation to the simultaneous availability of low levels of different electron acceptors. SIP successfully resolved the involvement of microaerobic vs. aerobic and anaerobic populations. Under microoxic, nitrate-amended conditions hydrocarbon degradation was actually stimulated, but transcripts of denitrification showed no signs of 13C-labelling. The expression of distinct oxygenase-based catabolic pathways for toluene degradation was clearly apparent in 13C-labelled mRNA. We discuss how these direct insights into the gene expression and adaptation mechanisms within complex degrader communities can guide more integrated approaches in monitoring and restoration of contaminated sites.
Project description:Due to its high altitude and extreme climate conditions, the Tibetan plateau is a region vulnerable to the impact of climate changes and anthropogenic perturbation, thus understanding how its microbial communities function may be of high importance. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, aiming to explore potential microbial responses to climate changes and anthropogenic perturbation. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities in treatment site were distinct, compared with those in control site, e.g. shrubland vs grassland, grazing site vs ungrazing site, or warmer site vs colder site. Substantial variations were apparent in stress, N and C cycling genes, but they were in line with the functional roles of these genes.
Project description:A significant part of the heavier petroleum fraction resulting from offshore oil-spills sinks to the deep-sea. Its fate and biodegradation by microbial communities is unclear. In particular, the physiological and metabolic features of hydrostatic pressure (HP) adapted oil-degraders have been neglected. In this study, hydrocarbon-free sediment from 1km below surface water (bsl) was incubated at 0.1, 10 and 20MPa (equivalent to surface waters, 1 and 2km bsl) using triacontane (C30) as sole carbon source for a 3-month enrichment period. HP strongly impacted biodegration, as it selected for microbial communities with small cells, high O2 respiration and nutrients requirements, but low biomass and C30-degradation yields. The alkane-degrading metaproteome linked to β-oxidation was detected but its expression was reduced under HP contrary to several housekeeping genes. This was reflected in the enriched communities, as atmospheric pressure was dominated by hydrocarbonoclastic bacteria while non-specialized or previously unrecognized oil-degrading genera were enriched under HP.
Project description:Understanding the bacterial community structure, and their functional analysis for active bioremediation process is essential to design better and cost effective strategies. Microarray analysis enables us to simultaneously study the functional and phylogenetic markers of hundreds of microorganisms which are involved in active bioremediation process in an environment. We have previously described development of a hybrid 60-mer multibacterial microarray platform (BiodegPhyloChip) for profiling the bacterial communities and functional genes simultaneously in environments undergoing active bioremediation process (Pathak et al; Appl Microbiol Biotechnol,Vol. 90, 1739-1754). The present study involved profiling the status of bacterial communities and functional (biodegradation) genes using the developed 60-mer oligonucleotide microarray BiodegPhyloChip at five contaminated hotspots in the state of Gujarat, in western India. The expression pattern of functional genes (coding for key enzymes in active bioremediation process) at these sites was studied to understand the dynamics of biodegradation in the presence of diverse group of chemicals. The results indicated that the nature of pollutants and their abundance greatly influence the structure of bacterial communities and the extent of expression of genes involved in various biodegradation pathways. In addition, site specific factors also play a pivotal role to affect the microbial community structure as was evident from results of 16S rRNA gene profiling of the five contaminated sites, where the community structure varied from one site to another drastically.