Project description:The Estrogen Receptor beta (ERβ) has an essential role in endometriosis progression. However, the molecular mechanism of how ERβ drives endometriosis progression is not elucidated, yet. To define the role of genomic ERβ in endometriosis progression, we have employed whole-genome microarray expression profiling as a discovery platform to identify ERβ-regulated transcriptome in endometriotic tissues. To get this transcriptome, we applied endometrium specific ERβ overexpression (ERBOE) mouse model by crossing mouse having a pCAG promoter-loxPSTOPloxP-ERβ cassette with PRCre knockin mice that Cre recombinase cDNA was inserted into exon 1 of PR gene. Endometriosis was surgically induced in ERBOE mice and PRCre mice as the control by transplantation of uterine tissues. The ectopic lesions and eutopic endometrium were harvested at the estrus cycle in 4th weeks after endometriosis induction.
Project description:Estrogen receptorï? beta (ER beta) has potent anti-proliferative and anti-inflammatory properties, suggesting that ER beta-selective agonists might be a new class of therapeutic and chemopreventative agents. To understand how ER beta regulates genes, we identified genes regulated by the unliganded and liganded forms of ER alpha and ER beta in U2OS cells. Microarray data demonstrated that virtually no gene regulation occurred with unliganded ER alpha, whereas many genes were regulated by estradiol (E2). These results demonstrate ER alpha requires a ligand to regulate a single class of genes. In contrast, ER beta regulated three classes of genes. Class I genes were regulated primarily by unliganded ER beta. Class II genes were regulated only with E2, whereas Class III genes were regulated by both unliganded ER beta and E2. There were 453 Class I genes, 258 Class II genes and 83 Class III genes. To explore the mechanism whereby ER beta regulates different classes of genes ChIP-seq was performed to identify ER beta binding sites and adjacent transcription factor motifs in regulated genes. AP1 binding sites were more enriched in Class I genes, whereas ERE, NFKB1 and SP1 sites were more enriched in class II genes. ER beta bound to all three classes of genes demonstrating that ER beta binding is not responsible for differential regulation of genes by unliganded and liganded ER beta. The coactivator, NCOA2 was differentially recruited to several target genes. Our findings indicate that the unliganded and liganded forms of ER beta regulate three classes of genes by interacting with different transcription factors and coactivators. U2OS cell lines are stably transfected with a doxycycline-inducible ER alpha or beta. 18 samples are analyzed with triplicate for each of the 6 conditions. The 6 conditions include ER alpha transfected without doxycycline added, ER alpha transfected with doxycycline added, ER alpha transfected with doxycycline added and E2 treatment, ER beta transfected without doxycycline added, ER beta transfected with doxycycline added, and ER beta transfected with doxycycline added and E2 treatment.
Project description:Estrogen Receptor beta (ERβ) has an essential role in endometriosis progression. However, the role of genomic ERβ in the pathogenesis of endometriosis is not elucidated, yet. To get ERβ cistrome, we employed endometrium specific ERβ overexpression (ERBOE) mouse model by crossing mouse having pCAG promoter-loxPSTOPloxP-ERβ cassette with PRCre knockin mice that Cre recombinase cDNA was inserted into exon 1 of PR gene. Using ERBOE mouse model, we determine ERβ-cistrome in endometriotic lesions and eutopic endometrium of mice with endometriosis.
Project description:We have utilized ChIPseq to identify the ER-beta cistrome in ER-beta expressing MDA-MB-231 triple negative breast cancer cells. ER-beta has been identified as a tumor suppressor in breast cancer and recent reports have demonstrated that ER-beta protein is detectable at moderate to high levels in approximately 30% of triple negative breast tumors. Increased expression of ER-beta in triple negative breast cancer has also been reported to be associated with improved recurrence-free survival. Treatment of ER-beta expressing triple negative breast cancer cells with estrogen, or the ER-beta selective agonist, LY500307, results in decreased cell proliferation, invasion and migration. To begin to identify the molecular mechanisms by which ER-beta elicits tumor suppressive effects in triple negative breast cancer, we performed ChIPseq studies and identified the genome-wide binding sites for ER-beta following exposure to 1nM estrogen or 10nM LY500307 for 3 hours. Over 28,000 and 10,000 unique ER-beta binding sites were identifed in response to these two ligands respectively. The top transcription factor motifs identified under both treatment conditions were estrogen response elements and AP1 response elements. The majority of ER-beta binding sites were found at enhancer regions located within introns or intergenic chromatin regions followed by gene promoters.
Project description:Estrogen receptor beta (ERbeta) has potent anti-proliferative and anti-inflammatory properties, suggesting that ER beta-selective agonists might be a new class of therapeutic and chemopreventative agents. To understand how ER beta regulates genes, we identified genes regulated by the unliganded and liganded forms of ER alpha and ER beta in U2OS cells. Microarray data demonstrated that virtually no gene regulation occurred with unliganded ER alpha, whereas many genes were regulated by estradiol (E2). These results demonstrate ER alpha requires a ligand to regulate a single class of genes. In contrast, ER beta regulated three classes of genes. Class I genes were regulated primarily by unliganded ER beta. Class II genes were regulated only with E2, whereas Class III genes were regulated by both unliganded ER beta and E2. There were 453 Class I genes, 258 Class II genes and 83 Class III genes. To explore the mechanism whereby ER beta regulates different classes of genes ChIP-seq was performed to identify ER beta binding sites and adjacent transcription factor motifs in regulated genes. AP1 binding sites were more enriched in Class I genes, whereas ERE, NFKB1 and SP1 sites were more enriched in class II genes. ER beta bound to all three classes of genes demonstrating that ER beta binding is not responsible for differential regulation of genes by unliganded and liganded ER beta. The coactivator, NCOA2 was differentially recruited to several target genes. Our findings indicate that the unliganded and liganded forms of ER beta regulate three classes of genes by interacting with different transcription factors and coactivators.
Project description:To identify specific markers of rectovaginal endometriotic nodule vasculature, highly enriched preparations of vascular endothelial cells and pericytes were obtained from endometriotic nodules and control endometrial and myometrial tissue by laser capture microdissection (LCM), and gene expression profiles were screened by microarray analysis. Of the 18,400 transcripts on the arrays, 734 were significantly overexpressed in vessels from fibromuscular tissue and 923 in vessels from stromal tissue of endometriotic nodules, compared to vessels dissected from control tissues. The most frequently expressed transcripts included known endothelial cell-associated genes, as well as transcripts with little or no previous association with vascular cells. The higher expression in blood vessels was further corroborated by immunohistochemical staining of 6 potential markers, 5 of which showed strong expression in pericytes. The most promising marker was matrix Gla protein, which was found to be present in both glandular epithelial cells and vascular endothelial cells of endometriotic lesions, while it was barely expressed at all in normal endometrium.
Project description:The development and progression of endometriotic lesions are poorly understood, but immune cell dysfunction and inflammation are closely associated with the pathophysiology of endometriosis. A lack of suitable 3D in vitro models permitting the study of interactions between cell types and the microenvironment is a contributing factor. To address this limitation, we developed endometriotic organoids (EO) to explore the role of epithelial-stromal interactions and model peritoneal cell invasion associated with lesion development. Using a non-adherent microwell culture system, spherical organoids were generated with endometriotic epithelial cells (12Z) combined with immortalized endometriotic stromal cells (iEc-ESC) or immortalized uterine stromal cells (iHUF). Organoids self-organized with stromal cells occupying the center and epithelial cells on the periphery of the organoid. Endometriotic organoids (EO), containing iEc-ESC, resulted in the development of stratified 12Z epithelial cells compared to those with iHUF where the 12Z cells developed as a single layered epithelium. Transcriptomic analysis found 4,522 differentially expressed genes (DEG) between EO and 12Z/iHUF organoids, and the top DEG included increased expression of interleukins and prostaglandin synthase enzymes. An overlap of the EO DEG with baboon endometriotic lesions was highly significant. Finally, to mimic invasion of endometrial tissue into the peritoneum, a model was developed using EO and extracellular matrix containing human peritoneal mesothelial cells (LP9). Invasion of EO into the extracellular matrix-LP9 layer was increased in presence of estrogen or THP1-derived proinflammatory macrophages. Taken together, our results strongly support the concept that EO are an appropriate model for dissecting mechanisms that contribute to endometriotic lesion development.
Project description:This SuperSeries is composed of the following subset Series: GSE21769: Genome wide expression analysis of ER alpha and beta with or without E2 treatment in U2OS cell line. GSE21770: Genome-wide maps of ER beta binding sites in U2OS cells Refer to individual Series
Project description:miRNA high-throughput sequencing was used to investigate endometriosis lesion-specific miRNA expression profiles by comparing a set of paired samples of peritoneal endometriotic lesions and matched healthy surrounding tissue together with eutopic endometrium of the same patients. We found that miRNAs of surrounding peritoneal tissue mask most of the miRNA expression differences that could originate from endometriotic tissue and thus only miRNAs with significantly different levels in the endometriotic lesions compared to peritoneal tissue were detected. According to the results of this study, two miRNAs – miR-34c and miR-449a showed remarkably higher expression in lesions compared to healthy tissue.