Project description:The association between T2 DM and BMSCs osteogenic differentiation has been documented in experimental settings. We examine miRNA expression specific for BMSCs from human jaw in Type 2 diabetics.
Project description:Bone marrow mesenchymal stem cells (BMSCs) differentiate into various mature cell types, including adipocytes and osteoblasts, which is determined by genetic, molecular mediators and local microenvironment. With age, BMSCs become inclined to undergo differentiation into adipocytes rather than osteoblasts, resulting in an increased number of adipocytes and a decreased number of osteoblasts, causing osteoporosis. The dysregulated the gene expression in BMSCs during aging were analyzed. We used microarrays to detail the global programme of gene expression duing aing in BMSCs.
Project description:The osteonecrotic area of steroid-induced avascular necrosis of the femoral head (SANFH) is a hypoxic microenvironment that leads to apoptosis of transplanted bone marrow mesenchymal stem cells (BMSCs). However, the underlying mechanism remains unclear. Here, we explore the mechanism of hypoxic-induced apoptosis of BMSCs, and use the mechanism to improve the transplantation efficacy of BMSCs. We analyzed LncRNA/mRNA expression profile of BMSCs under hypoxia conditions, and successfully screened the key long non-coding RNA AABR07053481 (LncAABR07053481) which mediated hypoxic apoptosis of BMSCs, we further determined its regulatory mechanism. Importantly, overexpression of LncAABR07053481 can improve the survival rate and repair efficacy of BMSCs under hypoxia conditions.
Project description:Abstract Background: Bone marrow stromal cells (BMSCs) are being used for immune modulatory, anti-inflammatory and tissue engineering applications, but the properties responsible for these effects are not completely understood. Human BMSCs were characterized to identify factors that might be responsible for their clinical effects and biomarkers for assessing their quality. Methods: Early passage BMSCs prepared from marrow aspirates of 4 healthy subjects were compared to 3 human embryonic stem cell (hESC) samples, CD34+ cells from 3 healthy subjects and 3 fibroblast cell lines. The cells were analyzed with oligonucleotide expression microarrays with more than 35,000 probes. Results: BMSC gene expression signatures of BMSCs differed from those of hematopoietic stem cells (HSCs), hESCs and fibroblasts. Genes up-regulated in BMSCs were involved with cell movement, cell-to-cell signaling and interaction and proliferation. The BMSC up-regulated genes were most likely to belong to integrin signaling, integrin linked kinase (ILK) signaling, NFR2-mediated oxidative stress response, regulation of actin-based motility by Rho, actin cytoskeletal signaling, caveolar-mediated endocytosis, clathrin-mediated endocytosis and Wnt/beta catenin signaling pathways. Among the most highly up-regulated genes were structural extracellular (ECM) proteins: alpha1 and beta1 integrin chains, fibronectin, collagen type IIIalpha1, and collagen type Valpha1 and functional EMC proteins: connective tissue growth factor (CTGF) and transforming growth factor beta induced protein (TGFBI) and ADAM12. Conclusions: Global analysis of human BMSCs suggests that they are mobile, metabolically active, proliferative and interactive cells that make use of integrins and integrin signaling. They produce abundant ECM proteins; some of which may contribute to their clinical immune modulatory and anti-inflammatory effects. Seven samples from early passage BMSCs were prepared from marrow aspirates of healthy subjects and compared to 3 human embryonic stem cell (hESC) samples, CD34+ cells from 3 healthy subjects and 3 fibroblast cell lines. Total RNA from a pool of PBMCs from six healthy subjects was extracted and amplified into aRNA to serve as a reference.
Project description:Mesenchymal stem cells (MSCs), known for their ability to differentiate into osteoblasts, play a pivotal role in bone metabolism. Prior to this study, we identified a novel lncRNA called MCP1 regulatory factor (MRF), which exhibits significant involvement in immune regulation of BMSCs. Moreover, we observed noticeable expression changes of MRF during the osteogenic differentiation of BMSCs. However, the exact role and underlying mechanism of MRF in the osteogenic differentiation of BMSCs remain elusive. QRT-PCR analysis was used to assess the expression of MRF. RNA interference and overexpression plasmids were employed to modulate MRF expression and observe changes in the osteogenic differentiation capacity of BMSCs. Downstream pathways involved in MRF-mediated regulation of BMSCs' osteogenic differentiation were predicted using transcriptome sequencing. The functionality of MRF in vivo was validated through a mouse tibial drilling defect model. In patients with osteoporosis, there is a conspicuous escalation in the expression of MRF within BMSCs. During the bone differentiation process of BMSCs, the MRF gradually diminishes over time. The knockdown of MRF amplifies the osteogenic differentiation of BMSCs, promoting an increased expression of bone-related proteins such as RUNX2, ALP, and COL1A1. Transcriptome sequencing and western blot indicated that cAMP/PKA/CREB signaling pathway was significantly activated after lncRNA-MRF knockdown. The mouse tibial drilling defect model demonstrates that the knockdown of MRF conspicuously advances ossification in vivo. MRF modulates the cAMP/PKA/CREB signaling axis through FSHR, thereby adjusting the ossification differentiation of BMSCs. Our research suggests that MRF may a potential target for bone related disorders.