Project description:Cerebrospinal fluid (CSF) proteins regulate neurogenesis, homeostasis and participate in active signalling during neuroinflammation. Components of CSF are mostly blood-derived, but partially also secreted from the brain cells. While various birds may represent suitable models for the investigation of adult constitutive neurogenesis, proteomic studies of the avian CSF examined so far solely chicken embryos. On this basis, we explored the proteomic composition of CSF and plasma in adult parrots, budgerigar (Melopsittacus undulatus) and cockatiel (Nymphicus hollandicus) and chickens (Gallus gallus) using liquid chromatography–tandem mass spectrometry (nLC-MS/MS). To overcome the lack of a complete cockatiel genome information, we compared the MS/MS identification success rates after mapping all spectra from all three species against the reference proteomes of three model avian species: chicken, budgerigar and zebra finch. We show highest efficiency (8.8-4.7%) for the closest reference proteome, although part of the proteins (7.2-18%) were mapped only with other references. After filtering the selected datasets, we identified up to 746 proteins represented in the CSF and plasma of chicken, budgerigar and cockatiel. Enrichment analysis of the core proteome of these datasets revealed various metabolic and signalling pathways. Comparative analysis of CSF and plasma for each species then indicated clusters of proteins preferentially upregulated into CSF that were involved in neurogenesis, neural development and neural differentiation pathways. This study provides the first insight into the proteomics of adult avian CSF and plasma and brings novel molecular evidence supporting the adult neurogenesis in birds.
Project description:modENCODE_submission_5986 This submission comes from a modENCODE project of Jason Lieb. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The focus of our analysis will be elements that specify nucleosome positioning and occupancy, control domains of gene expression, induce repression of the X chromosome, guide mitotic segregation and genome duplication, govern homolog pairing and recombination during meiosis, and organize chromosome positioning within the nucleus. Our 126 strategically selected targets include RNA polymerase II isoforms, dosage-compensation proteins, centromere components, homolog-pairing facilitators, recombination markers, and nuclear-envelope constituents. We will integrate information generated with existing knowledge on the biology of the targets and perform ChIP-seq analysis on mutant and RNAi extracts lacking selected target proteins. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: N2; Developmental Stage: L3 Larva; Genotype: wild type; Sex: mixed Male and Hermaphrodite population; EXPERIMENTAL FACTORS: Developmental Stage L3 Larva; temp (temperature) 20 degree celsius; Strain N2; Antibody NURF-1 SDQ3525 (target is NURF-1)
Project description:Trithorax group (TrxG) proteins counteract Polycomb silencing by an as yet uncharacterized mechanism. A well-known member of the TrxG is the histone methyltransferase Absent, Small, or Homeotic discs 1 (ASH1). In Drosophila ASH1 is needed for the maintenance of Hox gene expression throughout development, which is tightly coupled to preservation of cell identity. In order to understand the molecular function of ASH1 in this process, we performed affinity purification of tandem-tagged ASH1 followed by mass spectrometry (AP-MS) and identified FSH, another member of the TrxG as interaction partner. Here we provide genome-wide chromatin maps of both proteins based on ChIP-seq. Our Dataset comprises of 4 ChIP-seq samples using chromatin from S2 cells which was immunoprecipitated, using antibodies against Ash1, FSH-L and FSH-SL.
Project description:Seeds are comprised of three major parts of distinct parental origin: the seed coat, embryo, and endosperm. The maternally-derived seed coat is important for nurturing and protecting the seeds during development. By contrast, the embryo and the endosperm are derived from a double fertilization event, where one sperm fertilizes the egg to form the diploid zygote and the other sperm fertilizes the central cell to form the triploid endosperm. Each seed part undergoes distinct developmental programs during seed development. What methylation changes occur in the different seed parts, if any, remains unknown. To uncover the possible role of DNA methylation in different parts of the seed, we characterized the methylome of three major parts of cotyledon stage seeds, the seed coat, embryonic cotyledons, and embryonic axis, using Illumina sequencing. Illumina sequencing of bisulfite-converted genomic DNA from three parts of soybean cotyledon stage seeds: seed coat (COT-SC), embryonic cotyledons (COT-COT), and embryonic axis (COT-AX).