Project description:A bacterial strain identified as Cupriavidus basilensis uses aromatic compounds as carbon and energy sources and has a high capability to transform the structurally related and hormonally active substance bisphenol A (BPA). Biphenyl-grown and phenol-grown cells converted BPA to five products within 24 h of incubation representing four different transformation pathways: (a) ring hydroxylation, (b) ring fission, (c) transamination and acetylation, and (d) dimerization. Products of the ring fission pathway were non-toxic and all five products exhibited a significantly reduced estrogenic activity compared to BPA. Cell cultivation in nutrient broth resulted in lower product quantities and dimerization was not proved. Thus the question arose whether enzymes of the biphenyl or phenol degradation pathway are involved in the transformation of BPA. Proteomic analyses revealed the constitutive expression of biphenyl degrading enzymes and indicated that the 2,3 dihydroxybiphenyl-1,2-dioxygenase might catalyse the meta-cleavage of the aromatic ring of BPA while enzymes of other pathways seemed to be involved in ring hydroxylation.
Project description:The degradation of aromatic compounds comprises an important step in the removal of pollutants and re-utilization of plastics and other non-biological polymers. Here we set out to study Pseudomonas sp. strain phDV1, a gram-negative bacterium that was selected for its ability to degrade aromatic compounds. In order to understand how the aromatic compounds and their degradation products are reintroduced in the metabolism of the bacteria and the systematic/metabolic response of the bacterium to the new carbon source, the proteome of this strain was analysed in the presence of succinate, phenol and o-, m-, p-cresol as sole carbon source. We then applied label-free quantitative proteomics to monitor overall proteome remodeling during metabolic adaptation to different carbon sources. As a reference proteome, we grew the bacteria in succinate and then compared the respective proteomes of bacteria grown on phenol and different cresols. In total, we identified 2295 proteins; 1908 proteins were used for quantification between different growth conditions. We found that 70, 100, 150 and 155 proteins were significantly differentially expressed in cells were grown in phenol, o-, m- and p-cresol-containing medium, respectively. The carbon source affected the synthesis of enzymes related to aromatic compound degradation, and in particular, the enzyme involved in the meta-pathway of monocyclic aromatic compounds degradation. In addition, proteins involved in the production of polyhydroxyalkanoate (PHA), an attractive biomaterial, showed higher expression levels in the presence of monocyclic aromatic compounds.Our results provide for the first time comprehensive information on the proteome response of this strain to monocyclic aromatic compounds.
2020-10-22 | PXD021237 | Pride
Project description:Isolation of Carcinogenic Polycyclic Aromatic Hydrocarbons degrading bacteria from Earthworm Gut
Project description:Bacterial aromatic degradation may cause oxidative stress. The long-chain flavodoxin FldX1 of Paraburkholderia xenovorans LB400 counteracts reactive oxygen species (ROS). The aim of this study was to evaluate the protective role of FldX1 in P. xenovorans LB400 during the degradation of 4-hydroxyphenylacetate (4-HPA) and 3-hydroxyphenylacetate (3-HPA). Functionality of FldX1 was assessed by P. xenovorans p2-fldX1 that overexpresses FldX1. The effects of FldX1 on P. xenovorans were studied measuring growth on hydroxyphenylacetates, degradation of 4-HPA and 3-HPA, and ROS formation. The effects of hydroxyphenylacetates on the proteome (LC–MS/MS) and gene expression (qRT-PCR) were quantified. Bioaugmentation with strain p2-fldX1 of 4-HPA-polluted soil was assessed, measuring aromatic degradation (HPLC), 4-HPA-degrading bacteria, and plasmid stability.
Project description:The opportunistic pathogen Streptococcus gallolyticus is one of the few intestinal bacteria that has been consistently linked to colorectal cancer (CRC). This study aimed to identify S. gallolyticus-induced pathways that could on the long-term add to CRC progression. Transcription profiling of S. gallolyticus-exposed CRC-cells revealed the persistent induction of enzymes involved in biotransformation pathways. Specifically, a diffusible factor of S. gallolyticus (SGF-X) interacts with the aryl hydrocarbon receptor thereby inducing CYP1 enzymes that catalyze the bioactivation of polycyclic aromatic hydrocarbons (PAHs) into toxic intermediates. Importantly, priming CRC-cells with SGF-X containing medium increased the DNA damaging effect of the PAH 3-methylcholanthrene, which was not observed for other intestinal bacteria. In conclusion, this study shows for the first time that bacteria can modulate the biotransformation capacity of CRC-cells that offers a novel theory for a contributing role of S. gallolyticus in the etiology of sporadic CRC. Key words : Colorectal cancer cells, Streptococcus bovis, streptococcus gallolyticus, host-pathogen interactions, Cytochrome P4501A1, DNA-damage, polycyclic aromatic hydrocarbons
Project description:Degradation of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene by anaerobic microorganisms is poorly understood. Strain NaphS2, an anaerobic sulfate reducing marine delta-proteobacterium is capable of using naphthalene and the aromatic compound benzoate, as well as pyruvate, as an electron donors in the presence of sulfate. In order to identify genes involved in the naphthalene degradation pathway, we compared gene expression in NaphS2 during growth on benzoate vs. pyruvate, naphthalene vs. pyruvate, and naphthalene vs benzoate.
Project description:Insight into the mechanisms for the anaerobic metabolism of aromatic compounds by the hyperthermophilic archaeon Ferroglobus placidus is expected to improve understanding of the degradation of aromatics in hot (> 80 °C) environments and to identify enzymes that might have biotechnological applications. Analysis of the F. placidus genome revealed genes predicted to encode enzymes homologous to those previously identified as playing a role in benzoate and phenol metabolism in mesophilic bacteria. Surprisingly, F. placidus lacks genes for an ATP-independent class II benzoyl-CoA reductase found in all strictly anaerobic bacteria, but instead has two sets of genes for ATP-consuming class I benzoyl-CoA reductases, similar to those found in facultative bacteria. The lower portion of the benzoate degradation pathway appears to be more similar to that found in the phototroph Rhodopseudomonas palustris, than the pathway reported for all heterotrophic anaerobic benzoate degraders. Many of the genes predicted to be involved in benzoate metabolism were found in one of two gene clusters. Genes for a phenol carboxylation proceeding through a phenylphosphate intermediate and for conversion of p-hydroxybenzoate to benzoyl-CoA were identified in a single gene cluster. Analysis of transcript abundance with a whole-genome microarray and quantitative PCR demonstrated that most of the genes predicted to be involved in benzoate or phenol metabolism had higher transcript abundance during growth on those substrates versus growth on acetate. These results suggest that the general strategies for benzoate and phenol metabolism may be highly conserved between microorganisms living in moderate and hot environments, and that anaerobic metabolism of aromatic compounds might be analyzed in a wide range of environments with similar molecular targets. A four chip study using total RNA recovered from two separate cultures of Ferroglobus placidus DSM 10642 grown with 1 mM sodium benzoate (experimental condition) and two separate cultures of Ferroglobus placidus DSM 10642 grown on 10 mM acetate (control condition). Each chip measures the expression level of 2613 genes from Ferroglobus placidus DSM 10642 with nine 45-60-mer probe pairs (PM/MM) per gene, with three-fold technical redundancy.
Project description:MicroRNAs (miRNAs) associate with Argonaute (AGO) proteins to direct widespread post-transcriptional gene repression. Although association with AGO typically protects miRNAs from nucleases, extensive pairing to some unusual target RNAs can trigger miRNA degradation. Here we found that this target-directed miRNA degradation (TDMD) required the ZSWIM8 Cullin-RING E3 ubiquitin ligase. This and other findings suggested and supported a mechanistic model of TDMD in which target-directed proteolysis of AGO by the ubiquitin–proteasome pathway exposes the miRNA for degradation. Moreover, loss-of-function studies indicated that the ZSWIM8 Cullin-RING ligase accelerates degradation of numerous miRNAs in cells of mammals, flies, and nematodes, thereby specifying the half-lives of most short-lived miRNAs. These results elucidate the mechanism of TDMD and expand the inferred role of TDMD in shaping miRNA levels in bilaterian animals.