Project description:The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 often faces salt stress in its natural habitats. One-color microarrays was used to investigate transcriptome expression profiles of Bacillus sp. N16-5 adaptation reactions to prolonged grown at different salinities (0%, 2%, 8% and 15% NaCl) and the initial reaction to suddenly alter salinity from 0% to 8% NaCl.
Project description:RNAseq analysis was performed to evaluate gene expression differences between strains 1-9 and PAK-AR2.P. aeruginosa PAK-AR2 and 1-9 cells were grown to OD600 of 0.8 before harvesting. The collected cells were treated with RNAprotect Bacteria Reagent (Qiagen) and subjected to snap freezing in liquid nitrogen and delivered to BGI in dry ice for transcriptome resequencing analysis.The differentially expressed genes (DEGs) were determined between PAK-AR2 and 1-9 with the standards of false discovery rate (FDR ) ≤ 0.001, fold change |log2Ratio|≥1.A total of 4,355,305 reads matched to the referenced genome in the sample of PAK-AR2, and 3,544,484 reads in the sample of 1-9.Transcriptome data showed that expression of 361 genes were upregulated while 459 genes were down regulated by at least 2-fold when comparing the srpA mutant strain 1-9 to its parent strain PAK-AR2.These genes were classified into 21 major cellular processes based on the annotation of KEGG_B_class or further grouped into several major metabolic pathways, such as ribosomal proteins, type III secretion system (T3SS), type VI secretion system (T6SS), chemotaxis, cell motility, and cell shape control.More and more small proteins that were ignored from typical genome annotations have now been experimentally demonstrated to play important regulatory roles on various bacterial metabolic.
Project description:The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 often faces salt stress in its natural habitats. One-color microarrays was used to investigate transcriptome expression profiles of Bacillus sp. N16-5 adaptation reactions to prolonged grown at different salinities (0%, 2%, 8% and 15% NaCl) and the initial reaction to suddenly alter salinity from 0% to 8% NaCl. Salt induced gene expression was measured when culture was grown on different salinities (0%, 2%, 8% and 15% NaCl) to mid-logarithmic phase. And salt induced gene expression was also measured at 0 min, 10 min, 30 min, 60min, 120min after a sudden change salinity from 0% to 8% NaCl.
Project description:Alkaline hemicellulytic bacteria Bacillus sp. N16-5 has abroad substrate spectrum and exhibits great growth ability on complex carbohydrates. In order to get insight into its carbohydrate utilization mechanism, global transcriptional profiles were separately determined for growth on glucose, fructose, mannose, galactose, arabinose, xylose, galactomannan, xylan, pectin and carboxymethyl cellulose by using one-color microarrays.
Project description:BackgroundBiosurfactants are a structurally diverse group of secondary metabolites with lots of potential to serve mankind. Depending upon the structure and composition they may exhibit properties that make them suitable for a particular application. Structural and compositional diversity of biosurfactant is unambiguously substrate dependent. The present study investigates the qualitative and quantitative effect of different water soluble carbon source on the biosurfactant produced by Bacillus amylofaciens strain AR2.ResultsStrain AR2 produced lipopeptide type biosurfactant while growing on water soluble carbon sources. Maximum biosurfactant production was observed in the sucrose supplemented minimal salt medium (MSM). Strain AR2 exhibited carbon source dependent surface tension reduction in the range of 30-37 mN/m, critical micelle concentration (CMC) in the range 80-110 mg/l and emulsification index (EI24 kerosene) in the range of 32-66%. In dextrose, sucrose and glycerol supplemented MSM, strain AR2 produced lipopeptides as a mixture of surfactin, iturin and fengycin. However, in the presence of maltose, lactose and sorbitol only iturin was produced. This substrate dependent compositional variation in the lipopeptides significantly influenced antifungal activity. Lipopeptides produced by strain AR2 while growing on sucrose and dextrose based MSM was observed to be most efficient as an antifungal agent.ConclusionsThese results suggest that carbon source provided for the growth and biosurfactant production not only influences the yield but also the type of biosurfactant. Sucrose is the most suitable carbon source for production of lipopeptide biosurfactant with antifungal activity.
Project description:<p>Gut microbiota modulation by a probiotic is a novel therapy for hypercholesterolemia mitigation. This study initially investigated the potential hypocholesterolemic effect of Bacillus sp. DU-106 in hypercholesterolemic rats and explored its potential relation with gut microbiota. Sprague-Dawley rats received a high-fat diet, or a high-fat diet supplemented with 7.5 × 10<sup>9</sup> and 1.5 × 10<sup>10</sup> CFU/kg bw/day Bacillus sp. DU-106 (low-dose and high-dose groups). At the end of 9 weeks, Bacillus sp. DU-106 treatment significantly decreased the body weight, liver index, and total cholesterol. 16S rRNA sequencing showed that Bacillus sp. DU-106 intervention significantly increased bacterial richness and particularly increased the genus abundance of Turicibacter, Acinetobacter, Brevundimonas, and Bacillus and significantly decreased the abundance of Ralstonia. Metabolomic data further indicated that the supplementation of Bacillus sp. DU-106 remarkably changed the gut metabolic profiles of hypercholesterolemic rats and, in particular, elevated the metabolites of indole-3-acetate, methylsuccinic acid, creatine, glutamic acid, threonine, lysine, ascorbic acid, and pyridoxamine. Spearman's correlation analysis showed the close relation between the different genera and metabolites. In conclusion, Bacillus sp. DU-106 supplement ameliorated high-fat diet-induced hypercholesterolemia and showed potential probiotic benefits for the intestine.</p><p><strong>KEY POINTS:</strong> • A novel potential probiotic Bacillus sp. DU-106 ameliorated hypercholesterolemia in rats. • Bacillus sp. DU-106 supplement regulated gut microbiome structure and richness. • Bacillus sp. DU-106 supplement changed metabolic profiles in high-fat diet rats. • Significant correlations were observed between differential genera and metabolites.</p>