Project description:To study the role of Dengue virus serotype 4 NS1 in modulation of host cell transcriptome we performed gene expression profiling using data obtained from RNA- sequencing of total RNA from 3 different samples: Huh7 cells (no transfection), Huh7 cells transfected with pTracer-SV40 empty vector and Huh7 cells transfected with pTracer-SV40 encoding dengue virus serotype 4 NS1 (pDENV4 NS1).
Project description:Human primary monocytes were differentiated for 6days in the presence of M-CSF. The resulting macrophages were infected with dengue virus serotype 2, strain 16681 under the following conditions: Mock, Multiplicity of infection (MOI) 1 without antibodies, MOI 1 with 40ng/mL of irrelevant human antibody, MOI 1 with infection enhancing antibody (40ng/mL of a human monoclonal antibody against dengue), and either MOI 5 or MOI 2.5. Total cell RNA was isolated at 2h post infection or 24h post infection.
Project description:Investigation of whole genome gene expression level changes in Moyo-S and Moyo-R strains of Aedes aegypti after oral infection of serotype 1, serotype 2, serotype 3 and serotype 4 of dengue virus The Moyo-S is highly suscpetible to dengue infection whereas Moyo-R is refractory to the dengue infection. They have been investigated in our previous studies incluidng Behura et al. (2011). PLoS neglected tropical diseases 5 (11), e1385; and Chauhan et al. (2012). PloS one 7 (10), e47350.
Project description:Healthy flavivirus-naive volunteers (n=11) were infected with the live attenuated dengue serotype 2 challenge virus (rDEN2delta30) as the control arm of a dengue vaccine challenge trial. Whole blood RNA was collected in Paxgene tubes for expression profiling prior to infection (day 0), and on days 8, and 28 after rDEN2delta30 infection. Whole blood RNA was depleted of globin-and rRNA transcripts and equal amounts of depleted RNAs were used to generate libraries for SE 100 RNA sequencing per sample on by Illumina. To generate technical replicates, each library was run in different flow cells/lanes and aggregated to an average of approximately 26 million reads total per sample with <1% variation in counts across lanes in a given sample. Comparisons of gene expression in count-normalized samples were focused on analysis of grouping data by timepoint as well as by examining consensus intra-subject timepoint-associated gene expression changes after rDEN2delta30 infection, focusing on pairwise comparisons (Day 8 vs Day 0, Day 28 vs Day 8, and Day 28 vs,. Day 0).
Project description:Dengue virus is an + strand RNA virus. We have carried our infections of human cells with Dengue and analyzed the translation, replication, and localization of the Dengue RNA. This allowed for clear definition of the life cycle of the Dengue virus inside a host cell. We also assessed the host response to Dengue virus, finding that a large fraction of the translational response is due to Interferon function. Translational and transcriptional analysis of the cellular response to Dengue virus infection
Project description:Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples. Background Dengue is a mosquito-borne viral infection causing a major public health problem globally. Dengue virus (DENV) is the causative agent of dengue fever (DF) and dengue hemorrhagic fever (DHF) and includes four distinct serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). DENV-2 and DENV-3 have been associated with severe dengue disease, consequently, laboratory testing for DENV is needed to confirm the diagnosis of DENV infection, serotype and to differentiate dengue from other febrile tropical illnesses. In addition, surveillance of mosquitoes infected with DENV is needed to monitor the infection rates within vector mosquito populations harboring specific serotype to provide an early warning sign to predict epidemics. Results In this work we have applied microarray analysis to simultaneously determine the serotype of multiple RNA samples from human or mosquitoes. The proposed microarray method can be used for i) rapid and reliable dengue diagnosis; ii) serotyping and iii) surveillance of mosquitoes infected with dengue. These microarrays were useful to confirm the presence of DENV-2 in 94 serum samples, DENV-3 in three samples from Juchitan, Oaxaca and one case from Juchitan, Oaxaca contained DENV-2 and -3. Moreover by using these microarrays we also determined DENV in pools of gravid females mosquitoes collected in several sites of nineteen Mexican states in 2005. Mosquito pools from 31 cities in the states of Yucatan, Campeche, Tabasco, Chiapas, Veracruz, Oaxaca, Guerrero, Tamaulipas and Colima were infected with DENV-2, six cities in Yucatán, Tabasco, Morelos, Tamaulipas, Colima, and Nayarit with DENV-1, three from Tabasco, Veracruz and Oaxaca with DENV 3 and two with two serotypes simultaneously (Ciudad Mante with DENV-1 and DENV-2, and Tavela with DENV-2 and DENV-3). Conclusion Here we show the success of applying microarrays assay to provide a consistently robust qualitative detection of dengue serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) in serum samples from patients or in pools of gravid female mosquitoes collected in the field of nineteen Mexican states. Interestingly, we did not detect any mosquito or serum sample containing DENV-4.
Project description:Dengue virus is an + strand RNA virus. We have carried our infections of human cells with Dengue and analyzed the translation, replication, and localization of the Dengue RNA. This allowed for clear definition of the life cycle of the Dengue virus inside a host cell. We also assessed the host response to Dengue virus, finding that a large fraction of the translational response is due to Interferon function.