Project description:The centrosomal protein, CEP55 is a key regulator of cytokinesis and its overexpression is linked to genomic instability, a hallmark of cancer. However, the mechanism by which it mediates genomic instability remains elusive. Here, we showed that CEP55 overexpression/knockdown impacts survival of aneuploid cells. Loss of CEP55 sensitizes breast cancer cells to anti-mitotic agents through premature CDK1/Cyclin B activation and CDK1-Caspase-dependent mitotic cell death. Further, we showed that CEP55 is a downstream effector of the MEK1/2-MYC axis. Blocking MEK1/2-PLK1 signaling therefore reduced outgrowth of basal-like syngeneic and human breast tumors in in-vivo models. In conclusion, high CEP55 levels dictate cell fate during perturbed mitosis. Forced mitotic cell death by blocking MEK1/2-PLK1 represents a potential therapeutic strategy for MYC-CEP55-dependent basal-like, triple-negative breast cancers.
Project description:The centrosomal protein, CEP55, is a key regulator of cytokinesis, and its overexpression is linked to genomic instability, a hallmark of cancer. However, the mechanism by which it mediates genomic instability remains elusive. Here, we showed that CEP55 overexpression/knockdown impacts survival of aneuploid cells. Loss of CEP55 sensitizes breast cancer cells to anti-mitotic agents through premature CDK1/cyclin B activation and CDK1 caspase-dependent mitotic cell death. Further, we showed that CEP55 is a downstream effector of the MEK1/2-MYC axis. Blocking MEK1/2-PLK1 signaling therefore reduced outgrowth of basal-like syngeneic and human breast tumors in in vivo models. In conclusion, high CEP55 levels dictate cell fate during perturbed mitosis. Forced mitotic cell death by blocking MEK1/2-PLK1 represents a potential therapeutic strategy for MYC-CEP55-dependent basal-like, triple-negative breast cancers.
Project description:The centrosomal protein, CEP55 is a key regulator of cytokinesis and its overexpression is linked to genomic instability, a hallmark of cancer. However, the mechanism by which it mediates genomic instability remains elusive. Here, we showed that CEP55 overexpression/knockdown impacts survival of aneuploid cells. Loss of CEP55 sensitizes breast cancer cells to anti-mitotic agents through premature CDK1/Cyclin B activation and CDK1-Caspase-dependent mitotic cell death. Further, we showed that CEP55 is a downstream effector of the MEK1/2-MYC axis. Blocking MEK1/2-PLK1 signaling therefore reduced outgrowth of basal-like syngeneic and human breast tumors in in-vivo models. In conclusion, high CEP55 levels dictate cell fate during perturbed mitosis. Forced mitotic cell death by blocking MEK1/2-PLK1 represents a potential therapeutic strategy for MYC-CEP55-dependent basal-like, triple-negative breast cancers.
Project description:Calpains are non-lysosomal, Ca2+-dependent cysteine proteases, which are associated with various cellular functions but have so far been mainly studied in the context of disease. Their contribution to homeostasis in the healthy organism is still not well understood and their substrates have remained enigmatic in most cases. In the present study, we describe a previously unrecognized role for the calpain protease calpain2 in the regulation of neuronal differentiation of adult neural stem- and progenitor cells through cleavage and elimintation of the neuronal fate determinant MEIS2. Mass spectrometry analysis was performed on immunoprecipitated MEIS2 protein to identify phosphory¬lated residues in MEIS2 and on immunoprecipitated MEIS2 incubated with native porcine calpain2 to map calpain2-induced cleavage sites in the protein.
Project description:This is a Phase 1, single-dose, open-label, dose-escalation study. The study will be conducted in three parts (i.e. regimens) in an outpatient setting as follows:
* Regimen A: FATE-NK100 as a monotherapy in subjects with advanced solid tumor malignancies.
* Regimen B: FATE-NK100 in combination with trastuzumab in subjects with human epidermal growth factor receptor 2 positive (HER2+) advanced breast cancer, HER2+ advanced gastric cancer or other advanced HER2+ solid tumors.
* Regimen C: FATE-NK100 in combination with cetuximab in subjects with advanced colorectal cancer (CRC) or head and neck squamous cell cancer (HNSCC), or other epidermal growth factor receptor 1 positive (EGFR1+) advanced solid tumors.