Project description:The objective was to identify functional genes encoded by Fungi and fungal-like organisms to assess putative ecological roles Using the GeoChip microarray, we detected fungal genes involved in the complete assimilation of nitrate and the degradation of lignin, as well as evidence for Partitiviridae (a mycovirus) that likely regulates fungal populations in the marine environment. These results demonstrate the potential for fungi to degrade terrigenously-sourced molecules, such as permafrost and compete with algae for nitrate during blooms. Ultimately, these data suggest that marine fungi could be as important in oceanic ecosystems as they are in freshwater environments.
Project description:The objective of this study was to identify the different functional genes involved in key biogeochemical cycles in the low Arctic regions. Understanding the microbial diversity in the Arctic region is an important step to determine the effects of climate change on these areas.
Project description:The objective of this study was to identify the different functional genes involved in key biogeochemical cycles in thehigh Arctic regions. Understanding the microbial diversity in the Arctic region is an important step to determine the effects of climate change on these areas.
Project description:The objective of this study was to identify the different functional genes involved in key biogeochemical cycles in the sub- Arctic regions. Understanding the microbial diversity in the Arctic region is an important step to determine the effects of climate change on these areas.