Project description:This study is to develop a short term and highly accurate prediction method of renal carcinogenicity based on gene expression profile of rats administrated by carcinogens. We conducted 28 days-repeated dose experiments in male SD rats with 2,2-bis(bromomethyl)-1,3-propanediol, and the gene expression profiles of renal cortex were analyzed using custom microarrays.
Project description:Clostridium sp. strain CT7 is a new emerging microbial cell factory with high butanol ratio owing to the non-traditional butanol fermentation mode with uncoupled acetone and 1,3-propanediol formation. Significant change of products profile was shown in glycerol- and glucose-fed strain CT7, especially much higher butanol and lower volatile fatty acids production from glycerol-fed one. However, the mechanism of this interesting phenomenon was still unclear. To better elaborate the bacterial response towards glycerol and glucose, the quantitative proteomic analysis through iTRAQ strategy was performed to reveal the regulated proteomic expression levels under different substrates. Proteomics data showed highly increased proteomic expression levels of proteins related with glycerol utilization and solvent generation under glycerol media. In addition, the up-regulation of hydrogenases, ferredoxins and electron-transferring proteins may attribute to the internal redox balance, while the earlier triggered sporulation response in glycerol-fed media may be associated with the higher butanol fermentation. This study will provide the platform for metabolic engineering of this emerging industrial microorganism for more efficient butanol production from glycerol.