Project description:Grad-seq in Clostridium difficile 630. Cell lysate is analyzed in a gradient and fractionated into 21 fractions which are analysed for proteins by MS and for transcripts by RNA-sequencing.
Project description:Transcriptional analysis of Clostridium difficile R20291 in biofilm formation, planktonic state and grown on blood agar RNA sequencing was performed on Clostridium difficile R20291 in three different conditions: Biofilm formation, plantonic state and grown on blood agar plates. Each condtion has 3 replicates.
Project description:Genomic DNA of 61 strains of proteolytic Clostridium botulinum or Clostridium sporogenes was subjected to analysis by DNA microarray.
Project description:Development of an updated genome-scale metabolic model of Clostridium thermocellum and its application for integration of multi-omics datasets
Project description:The purpose of this study was to determine the level of genomic content similarity among selected strains of Clostridium botuinum type F strains.
Project description:This SuperSeries is composed of the following subset Series: GSE12358: Clostridium beijerinckii NCIMB 8052 wild-type fermentation time course GSE12359: Clostridium beijerinckii BA101 mutant fermentation time course Refer to individual Series
Project description:Clostridium acetobutylicum is a Gram-positive, endospore-forming bacterium that is considered as a strict anaerobe. It ferments sugars to the organic acids acetate and butyrate or shifts to formation of the solvents - ethanol, butanol and acetone. In most bacteria the major regulator of iron homeostasis is Fur (ferric uptake regulator). Analysis of the genome of Clostridium acetobutylicum has revealed three genes encoding Fur-like proteins. The amino acid sequece of one of them showed 70% similarity to the Fur protein of the closely related Bacillus subtilis.<br>Thus, to gain insight into the role of Fur and the mechanisms for maintenance of iron homeostasis in this strict anaerobic organism, we determined its transcriptional profile in response to iron limitation and inactivation of fur.