Project description:Salmonella enterica serovar Typhi (S. Typhi), a human-restricted pathogen, enters the host through the gut to cause typhoid fever. Recent calculations of the typhoid fever burden estimated that more than 20 million new typhoid fever cases occur in low and middle-income countries, resulting in 129,000-223,000 deaths yearly. Interestingly, upon the resolution of acute disease, 1%-5% of patients become asymptomatic chronic carriers of S. Typhi. Chronically infected hosts are not only critical reservoirs of infection that transmit the disease to naive individuals but are also predisposed to developing gallbladder carcinoma (GBC). Nevertheless, the molecular mechanisms involved in the early interactions between gallbladder epithelial cells and S. Typhi remain largely unknown. Based on our previous studies showing that very closely related S. Typhi strains elicit distinct innate immune responses, we hypothesized that host molecular pathways activated by S. Typhi strains derived from acutely and chronically infected patients will differ. To test this hypothesis, we used a novel human organoid-derived polarized gallbladder monolayer (HODGM) model, and 13 S. Typhi strains derived from acutely (n=6) and chronically (n=7) infected patients. We found that S. Typhi strains derived from acutely and chronically infected patients differentially regulate mitogen-activated protein kinase (MAPK) and S6 transcription factors. This differential regulation impacts, at least in part, the cytokine signaling pathway involved in the production of TNF- and IL-6 and is likely to play a critical role in inducing chronic S. Typhi infection in the gallbladder.
Project description:Part of a study to characterise the two component regulatory system yehUT of Salmonella enterica serovar Salmonella Typhi and Typhimurium. 24 Samples examined, 12 of strain Salmonella Typhi BRD948 and 12 of strain Salmonella Typhimurium ST4/74.
Project description:In order to characterize pathogen specific T cell responses against Salmonella volunteers challenged with Salmonella enterica serovar Typhi (S. Typhi) or Salmonella Paratyphi A (S. Paratyphi). we used mass cytometry, to identify effector CD4+ T cells circulating during infection. We identified a population of CCR7-CD38+ cells accumulating during infection, and via unbiased single cell cloning and expansion we demonstrated that these CCR7-CD38+ cells are enriched in Salmonella specific T cells. In this experiment we performed TCR repertoire analysis of CCR7-CD38+ and CCR7-CD38- cells to determine the clonality of CCR7-CD38+ cells, the overlap between the repertoire of CCR7-CD38+ cells and of non-activated effector CCR7-CD38- cells, and to identify within CCR7-CD38+ and CCR7-CD38- cells the presence of the CDR3b TCR sequence of the pathogen specific T cell clones isolated from CCR7-CD38+ cells
Project description:Part of a study to characterise the two component regulatory system yehUT of Salmonella enterica serovar Salmonella Typhi and Typhimurium.
Project description:The purpose of this experiment was to identify intestinal epithelial responses to various strains of Salmonella enterica. Human intestinal organoids were infected with three serovars of Salmonella; Typhimurium, Enteritidis and Typhi, as well as type 3 secretion system -1 and -2 mutants in Typhimurium in order to identify host responses that were similar and unique to each serovar, and responses that were dependent on these secretion systems.