Project description:Streptomyces clavuligerus F613-1 produces a clinically important β-lactamase inhibitor, clavulanic acid (CA). The biosynthesis pathway of CA has been basically elucidated, however, the global regulation of CA biosynthesis remains unclear. In order to further elucidate the regulatory mechanism of clavulanic acid synthesis, TCS RS07910/07915 which is next to the CA biosynthetic gene cluster was deleted in Streptomyces clavuligerus. F613-1. Deletion of RS07910/07915 results in decreased the production of CA, but the phenotype was not affected. Both the transcriptome and ChIP-seq data revealed that the TCS RS07910/07915 mainly regulate genes involved in primary metabolism (such as fatty acid degradation, glyceraldehyde 3-phosphate (G3P) metabolism, arginine biosynthesis) and CA biosynthesis. EMSA assays revealed that RS07915 could bind to the promoter fragments of argG, argC, oat1, oat2, ceaS1 and claR in vitro, indicating that RS07915 could direct regulate the biosynthesis genes of arginine and CA. This study indicated that RS07910/07915 is a pleiotropy regulatory TCS, RS07910/07915 could directly affect the biosynthesis of CA, and indirectly affect CA production through affecting primary metabolism of arginine and G3P (precursors of CA).
Project description:Clavulanic acid is a clinically-important secondary metabolite used in treatment of infectious diseases. We aimed to decipher complex regulatory mechanisms acting in clavulanic acid biosynthesis through the analysis of transcriptome- and proteome-wide alterations in an industrial clavulanic acid overproducer Streptomyces clavuligerus, namely DEPA and its wild-type counterpart NRRL3585.
Project description:To increase production of the important pharmaceutical compounds, both mutagenesis approaches and rational engineering have been extensively applied. Mutagenesis approaches are most popular in industry, but their effects have not yet been studied very well. Here, we used microarrays to compare the transcriptomes of the S. clavuligerus wild type (ATCC 27064) strain and the DS48802 clavulanic acid high-producer strain, which has been obtained by classical strain improvement (mutagenesis). Streptomyces clavuligerus strains were grown in shake flasks. RNA was extracted after 70h and hybridized to microarrays.
Project description:To investigate the function of organic nitrogen on clavulanic acid biosynthesis in Streptomyces clavuligerus, we established F613-1 strain cells cultured in MH fermentation medium and ML fermentation medium. We then performed gene expression profiling analysis using data obtained from RNA-seq of 2 different medium at three time points.
Project description:To increase production of the important pharmaceutical compounds, both mutagenesis approaches and rational engineering have been extensively applied. Mutagenesis approaches are most popular in industry, but their effects have not yet been studied very well. Here, we used microarrays to compare the transcriptomes of the S. clavuligerus wild type (ATCC 27064) strain and the DS48802 clavulanic acid high-producer strain, which has been obtained by classical strain improvement (mutagenesis).
Project description:<p>Clavulanic acid (CA) is the preferred clinical drug for the treatment of infections by β-lactam antibiotic-resistant bacteria. CA is produced by <em>Streptomyces clavuligerus</em>, and although there have been many reports on the effects of carbon and nitrogen sources on CA production, the mechanisms involved remain unclear. In this study, we found that CA accumulation in <em>S. clavuligerus</em> F613-1 was increased significantly in MH medium, which is rich in organic nitrogen, compared with that in ML medium, which contains half the amount of organic nitrogen present in MH medium. Transcriptome analysis revealed that genes involved in CA biosynthesis, such as <em>ceas1</em>, <em>ceas2</em>, <em>bls1</em>, <em>bls2</em>, <em>cas2</em>, <em>pah2</em>, <em>gcaS</em>, and <em>cad</em>, and arginine biosynthesis, such as <em>argB</em>, <em>argC</em>, <em>argD</em>, <em>argG</em>, <em>argH</em>, <em>argJ</em>, and <em>argR</em>, were upregulated under rich organic nitrogen. Metabolome data revealed notable differences between cultures of F613-1 grown in MH and ML media with regard to levels of key intracellular metabolites, most of which are involved in arginine metabolic pathways, including arginine, glutamine, and glutamic acid. Additionally, supplementation of ML medium with arginine, glutamine, or glutamic acid resulted in increased CA production by <em>S. clavuligerus</em> F613-1. Our results indicate that rich organic nitrogen mainly affects CA biosynthesis by increasing the levels of amino acids associated with the arginine metabolic pathway and activating the expression of the CA biosynthetic gene cluster. These findings provide important insights for improving medium optimization and engineering of <em>S. clavuligerus</em> F613-1 for high-yield production of CA.</p>
Project description:The objective was to analyze the differential expression between the control strain and S. clavuligerus::pimM. Experiment type Expression profiling by array
Project description:The objective is to analyze the differential expression between the wild strain and a pSCL4- S. clavuligerus mutant Experiment type Expression profiling by array
Project description:The objective was to analyze the differential expression between the wild strain and the Streptomyces clavuligerus ΔclaR::aac mutant Six experimental conditions were assayed, two strains (Streptomyces clavuligerus ATCC 27064, S. clavuligerus ΔclaR::aac) in three culture times (22.5h, 46.5h and 60 h). Two biological replicates for each condition.