Project description:Comparison of CoV 3'UTR cis-acting element interactome to link the cis-acting element to coronavirus replication by LC-MS/MS. The study is performed by in vitro-transcribed RNA followed by RNA-protein pull-down assay. In addition, the concluded results are decided by comparison between the biological processes derived from analysis of interactome and the replication efficiency.
Project description:Comparison of CoV 3'UTR cis-acting element interactome to link the cis-acting element to coronavirus replication by LC-MS/MS. The study is performed by in vitro-transcribed RNA followed by RNA-protein pull-down assay. In addition, the concluded results are decided by comparison between the biological processes derived from analysis of interactome and the replication efficiency.
Project description:Maternal mRNAs synthesized during oogenesis initiate the development of future generations. Some maternal mRNAs are either somatic or germline determinants and must be translationally repressed until embryogenesis. However, the translational repressors themselves are temporally regulated. We used polar granule component (pgc), a Drosophila maternal mRNA, to ask how maternal transcripts are repressed while the regulatory landscape is shifting. pgc, a germline determinant, is translationally regulated throughout oogenesis. We find that different conserved RNA-binding proteins bind a 10-nt sequence in the 3' UTR of pgc mRNA to continuously repress translation at different stages of oogenesis. Pumilio binds to this sequence in undifferentiated and early-differentiating oocytes to block Pgc translation. After differentiation, Bruno levels increase, allowing Bruno to bind the same sequence and take over translational repression of pgc mRNA. We have identified a class of maternal mRNAs that are regulated similarly, including zelda, the activator of the zygotic genome.
Project description:Maternal mRNAs are synthesized during oogenesis to initiate the development of future generations. Some maternal mRNAs are determinants of somatic or germline fate and must be translationally repressed until embryogenesis. However, the translational repressors themselves are also temporally regulated. We use polar granule component (pgc), a Drosophila maternal mRNA, as a model system to ask how maternal mRNAs are repressed while the regulatory landscape is continually shifting. pgc, a potent transcriptional silencer and germline determinant, is translationally regulated throughout oogenesis. We find that the 3’UTR of pgc mRNA contains a conserved ten-nucleotide sequence that is bound by different conserved RNA binding proteins (RBPs) at different stages of oogenesis to continuously repress translation except for a brief expression in the stem cell daughter. Pumilio (Pum) binds to this sequence in undifferentiated and early differentiating oocytes and recruits other temporally restricted translational regulators to block pgc translation. After differentiation, Pum levels diminish and Bruno (Bru) levels increase, allowing Bru to bind the same 3’UTR sequence and take over translational repression of pgc mRNA. We have identified a class of maternal mRNAs regulated during oogenesis by both Pum and Bru, including Zelda, activator of the zygotic genome, which contain this core 10-nt regulatory sequence. Our data suggests that this hand off mechanism is more generally utilized to inhibit translation of maternal mRNAs during oogenesis.
Project description:Maternal mRNAs are synthesized during oogenesis to initiate the development of future generations. Some maternal mRNAs are determinants of somatic or germline fate and must be translationally repressed until embryogenesis. However, the translational repressors themselves are also temporally regulated. We use polar granule component (pgc), a Drosophila maternal mRNA, as a model system to ask how maternal mRNAs are repressed while the regulatory landscape is continually shifting. pgc, a potent transcriptional silencer and germline determinant, is translationally regulated throughout oogenesis. We find that the 3’UTR of pgc mRNA contains a conserved ten-nucleotide sequence that is bound by different conserved RNA binding proteins (RBPs) at different stages of oogenesis to continuously repress translation except for a brief expression in the stem cell daughter. Pumilio (Pum) binds to this sequence in undifferentiated and early differentiating oocytes and recruits other temporally restricted translational regulators to block pgc translation. After differentiation, Pum levels diminish and Bruno (Bru) levels increase, allowing Bru to bind the same 3’UTR sequence and take over translational repression of pgc mRNA. We have identified a class of maternal mRNAs regulated during oogenesis by both Pum and Bru, including Zelda, activator of the zygotic genome, which contain this core 10-nt regulatory sequence. Our data suggests that this hand off mechanism is more generally utilized to inhibit translation of maternal mRNAs during oogenesis.
Project description:Primary piRNAs in Drosophila ovarian somatic cells arise from piRNA cluster transcripts and the 3′ UTRs of a subset of mRNAs, including Traffic jam (Tj) mRNA. However, it is unclear how these RNAs are determined as primary piRNA sources. Here, we identify a cis-acting 100-nt fragment in the Tj 3′ UTR that is sufficient for producing artificial piRNAs from unintegrated DNA. These artificial piRNAs were effective in endogenous gene transcriptional silencing. Yb, a core component of primary piRNA biogenesis center Yb bodies, directly bound the Tj-cis-element. Disruption of this interaction markedly reduced piRNA production. Thus, Yb is the trans-acting partner of the Tj-cis-element. Yb-CLIP revealed that Yb-binding correlated with somatic piRNA production but Tj-cis-element downstream sequences produced few artificial piRNAs. Thus, Yb determines primary piRNA sources by two modes of action; primary binding to cis-elements to specify substrates, and secondary binding to downstream regions to increase diversity in piRNA populations. HITS-CLIP of Yb in OSCs (Ovarian Somatic Cells) depleted for tj cis-element, and small RNA sequencing of Piwi-piRNAs in OSCs depleted for tj cis-element.
Project description:Primary piRNAs in Drosophila ovarian somatic cells arise from piRNA cluster transcripts and the 3′ UTRs of a subset of mRNAs, including Traffic jam (Tj) mRNA. However, it is unclear how these RNAs are determined as primary piRNA sources. Here, we identify a cis-acting 100-nt fragment in the Tj 3′ UTR that is sufficient for producing artificial piRNAs from unintegrated DNA. These artificial piRNAs were effective in endogenous gene transcriptional silencing. Yb, a core component of primary piRNA biogenesis center Yb bodies, directly bound the Tj-cis-element. Disruption of this interaction markedly reduced piRNA production. Thus, Yb is the trans-acting partner of the Tj-cis-element. Yb-CLIP revealed that Yb-binding correlated with somatic piRNA production but Tj-cis-element downstream sequences produced few artificial piRNAs. Thus, Yb determines primary piRNA sources by two modes of action; primary binding to cis-elements to specify substrates, and secondary binding to downstream regions to increase diversity in piRNA populations.