Project description:Bats as the only flying mammals incur a high metabolic cost during extended powered flight, which results in febrile-like temperatures without injury. Herein, we investigate the in vivo heat shock response (HSR) in the cave nectar bat Eonycteris spelaea. We demonstrate that E. spelaea exhibits enhanced physiological heat resistance, marked by reduced lethality, tissue damage and serum corticosterone levels in comparison to mice upon heat challenge. Additionally, E. spelaea did not exhibit an acute transcriptional response observed heat stress in mice. Instead, bats displayed a delayed and non-canonical HSR that did not involve the activation of classical heat shock related genes and pathways. This altered response in E. spelaea is attributed to the elevated basal expression of heat shock proteins, which we demonstrate to be a common characteristic exhibited by bats from diverse sub-orders, families and diets. Taken together, we demonstrate a distinct HSR in E. spelaea relative to the conventional model organism, mouse, which may provide insights to understand novel regulatory targets and effector proteins that underlie the mammalian heat shock response.
Project description:To examine the fundamental immunity in bats, particularly the status of their innate immune system in the basal healthy state, we profile Eonycteris spelaea bat tissue with Deep NGS coverage. This is coupled to a paired experiment where bats were stimulated in vivo with various PRR ligands to activate immune pathways.