Project description:Mining waste streams of food production for bioactive plant polysaccharides that affect the fitness and expressed activities of targeted human gut microbes
Project description:Coronary artery disease (CAD) is a widespread heart condition caused by atherosclerosis and influences millions of people worldwide. Early detection of CAD is challenging due to the lack of specific biomarkers. The gut microbiota and host-microbiota interactions have been well documented to affect human health. However, investigation that reveals the role of gut microbes in CAD is still limited. This study aims to uncover the synergistic effects of host genes and gut microbes associated with CAD through integrative genomic analyses.
Project description:Coronary artery disease (CAD) is a widespread heart condition caused by atherosclerosis and influences millions of people worldwide. Early detection of CAD is challenging due to the lack of specific biomarkers. The gut microbiota and host-microbiota interactions have been well documented to affect human health. However, investigation that reveals the role of gut microbes in CAD is still limited. This study aims to uncover the synergistic effects of host genes and gut microbes associated with CAD through integrative genomic analyses.
Project description:Chlamydiae are obligate intracellular bacteria comprising well-known human pathogens and ubiquitous symbionts of protists, which are characterized by a unique developmental cycle. Here we comprehensively analyzed gene expression dynamics of Protochlamydia amoebophila during infection of its Acanthamoeba host by RNA sequencing. This revealed a highly dynamic transcriptional landscape, where major transcriptional shifts are conserved among chlamydial symbionts and pathogens. Our data served to propose a time-resolved model for type III protein secretion during the developmental cycle, and we provide evidence for a biphasic metabolism of P. amoebophila during infection, which involves energy parasitism and amino acids as carbon source during initial stages and a post-replicative switch to endogenous glucose-based ATP production. This fits well with major transcriptional changes in the amoeba host, where upregulation of complex sugar breakdown precedes the P. amoebophila metabolic switch. The biphasic chlamydial metabolism represents a unique adaptation to exploit eukaryotic host cells, which likely contributed to the evolutionary success of this group of microbes.
Project description:Tissue and microbial cues regulate the abundance and function of CD8+ T cells at barrier sites, yet the impact of specific microbes on their long-term durability remains unclear. Here, we show that the commensal protist Tritrichomonas musculus (T. mu) depletes intestinal CD8+ T cells, particularly tissue resident memory (TRM) cells, through activation of localized type 2 immunity. Colonization with T. mu or administration of its major secreted metabolite, succinate, led to the rapid decline of intestinal CD8+ T cells but left systemic memory T cells unaffected. The purinergic receptor, P2RX7, is highly expressed by intestinal TRMs and chemical antagonism of this receptor markedly restored CD8+ T cells during succinate feeding. Using lymphocytic choriomeningitis virus (LCMV) infection to track antigen-specific CD8+ memory T cells, we found viral-specific CD8+ TRMs repopulate the intestine independent of LCMV reinfection after removal of succinate treatment. These findings highlight how commensal protists and their metabolites reset homeostatic CD8+ T cell carrying capacity through damage-independent stimulation of TRM apoptosis and regulate mucosal memory.