Project description:Tissue macrophages from peritoneal cavity, lung, liver, spleen, small intestine and adipose tissue and M-CSF derived bone marrow derived macrophages (BMDMs) were determined for gene expression. Macrophages from six different tissues and BMDMs were compared for gene expression.
Project description:Tissue macrophages from peritoneal cavity, lung, liver, spleen, small intestine and adipose tissue and M-CSF derived bone marrow derived macrophages (BMDMs) were determined for gene expression.
Project description:Gene expression from WT and NFAT5 KO primary macrophage cultures. Keywords: Bone-marrow derived macrophages. We analyzed 4 arrays from each condition: unstimulated WT BMDMs, LPS stimulated WT BMDMs, unstimulated KO BMDMs, LPS stimulated KO BMDMs.
Project description:To recruit phagocytes, apoptotic cells characteristically release ATP, which functions as a “danger” signal. Here, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as NR4A and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5’-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into AdoR A2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a “calm down” signal. If apoptotic cells produce “danger” or “anti-danger” signal(s), we rationalized that such signals would activate gene expression in macrophages. To investigate this possibility, we examined the effect of the culture supernatant from apoptotic cells on macrophage gene expression by using microarrays. For mouse BMDMs, bone marrow cells from female C57BL/6J mice at 8 weeks of age were cultured for more than 7 days with DMEM containing 10% FCS supplemented with mouse M-CSF. We used adherent cells as BMDMs in the study. W3 cells, mouse T cell line expressing Fas, were treated with human Fas ligand at 37°C for 30 min to induce apoptosis. The cells were then washed and re-suspended at a concentration of 1 × 107 cells/ml with RPMI containing 1% FCS, and further incubated for 60 min at 37°C. Following Fas ligand treatment, more than 90% of the W3 cells were Annexin V positive, and only small percentage were positive for both Annexin V and propidium iodide (PI). The culture supernatant was collected from apoptotic W3 cells. Next, BMDMs were incubated with medium (BMDMs-Medium) or apoptotic W3 cell supernatant (BMDMs-Apoptotic cell supernatant) for 1 h. Total RNA was extracted from the cells and hybridized on Affymetrix microarrays.
Project description:To investigate the role of METTL3-mediated m6A modification in macrophage, we performed m6A-sequencing to map the m6A modification in bone-marrow-derived macrophages (BMDMs) in wild type (WT) and Mettl3-/- mice.
Project description:To study the effect of stress on macrophages due to Toxoplasma, we stimulated murine bone marrow-derived macrophages (BMDMs) with IFN-γ (no-stimulate control) and infected them with the apicomplexan parasite Toxoplasma gondii. scRNA-Seq (10X Chromium genomics ) was performed to understand the changes in the immune cells and study the impact of the parasite.
Project description:Gene level expression estimate using the Whole Transcript (WT) Assay approach of the Gene 1.0 ST Array System for Mouse. This assay was done to identify the RIPK1-dependent gene expression changes in mouse BMDMs. Cost-effective gene-level analysis based on whole-transcript coverage. We analyzed Bone Marrow Derived Macrophages (BMDMs) under 4 different conditions (Control, LPS, LPS/zVAD, LPS/zVAD/Nec-1) to assess inflammatory changes in RIPK1 kinase dependent manner compared to LPS, LPS/zVAD plus RIPK1 inhibitor Nec-1 and control.
Project description:Identification of pro- and anti-inflammatory pathways induced in M-CSF differentiated bone-marrow derived macrophages (BMDMs) after 3 h stimulation with two different TLR2 agonists, Helicobacter hepaticus polysacharide and Pam3CSK4 (75 ng/ml), using TSB (Tryptone Soya Broth) medium as a control